Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,090 result(s) for "Nucleoside reverse transcriptase inhibitors"
Sort by:
Non‐nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability
Introduction Human immunodeficiency virus (HIV) type‐1 non‐nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection. Discussion First‐generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second‐generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next‐generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK‐4965, MK‐1439 and MK‐6186. Conclusions This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research.
Comparative efficacy and safety of dolutegravir relative to common core agents in treatment-naïve patients infected with HIV-1: a systematic review and network meta-analysis
Background Network meta-analyses (NMAs) provide comparative treatment effects estimates in the absence of head-to-head randomized controlled trials (RCTs). This NMA compared the efficacy and safety of dolutegravir (DTG) with other recommended or commonly used core antiretroviral agents. Methods A systematic review identified phase 3/4 RCTs in treatment-naïve patients with HIV-1 receiving core agents: ritonavir-boosted protease inhibitors (PIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), or integrase strand inhibitors (INSTIs). Efficacy (virologic suppression [VS], CD4 + cell count change from baseline) and safety (adverse events [AEs], discontinuations, discontinuation due to AEs, lipid changes) were analyzed at Week 48 using Bayesian NMA methodology, which allowed calculation of probabilistic results. Subgroup analyses were conducted for VS (baseline viral load [VL] ≤/> 100,000copies/mL, ≤/> 500,000copies/mL; baseline CD4 + ≤/>200cells/μL). Results were adjusted for the nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) combined with the core agent (except subgroup analyses). Results The NMA included 36 studies; 2 additional studies were included in subgroup analyses only. Odds of achieving VS with DTG were statistically superior to PIs (odds ratios [ORs] 1.78–2.59) and NNRTIs (ORs 1.51–1.86), and similar but numerically higher than other INSTIs. CD4 + count increase was significantly greater with DTG than PIs (difference: 23.63–31.47 cells/μL) and efavirenz (difference: 34.54 cells/μL), and similar to other core agents. INSTIs were more likely to result in patients achieving VS versus PIs (probability: 76–100%) and NNRTIs (probability: 50–100%), and a greater CD4 + count increase versus PIs (probability: 72–100%) and NNRTIs (probability: 60–100%). DTG was more likely to result in patients achieving VS (probability: 94–100%), and a greater CD4 + count increase (probability: 53–100%) versus other core agents, including INSTIs (probability: 94–97% and 53–93%, respectively). Safety outcomes with DTG were generally similar to other core agents. In patients with baseline VL > 100,000copies/mL or ≤ 200 CD4 + cells/μL (18 studies), odds of achieving VS with DTG were superior or similar to other core agents. Conclusion INSTI core agents had superior efficacy and similar safety to PIs and NNRTIs at Week 48 in treatment-naïve patients with HIV-1, with DTG being among the most efficacious, including in patients with baseline VL > 100,000copies/mL or ≤ 200 CD4 + cells/μL, who can be difficult to treat.
Cardiometabolic Differences in People Living with HIV Receiving Integrase Strand Transfer Inhibitors Compared to Non-nucleoside Reverse Transcriptase Inhibitors: Implications for Current ART Strategies
In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence the risk for non-AIDS comorbidities. We aimed to compare the metabolome and lipidome of INSTI and NNRTI-based regimens. The 2000HIV study includes asymptomatic PLHIV (n = 1646) on long-term cART, separated into a discovery cohort with 730 INSTI and 617 NNRTI users, and a validation cohort encompassing 209 INSTI and 90 NNRTI users. Baseline plasma samples from INSTI and NNRTI users were compared using mass spectrometry-based untargeted metabolomic (n = 500) analysis. Perturbed metabolic pathways were identified using MetaboAnalyst software. Subsequently, nuclear magnetic resonance spectroscopy was used for targeted lipoprotein and lipid (n = 141) analysis. Metabolome homogeneity was observed between the different types of INSTI and NNRTI. In contrast, higher and lower levels of 59 and 45 metabolites, respectively, were found in the INSTI group compared to NNRTI users, of which 77.9% (81/104) had consistent directionality in the validation cohort. Annotated metabolites belonged mainly to ‘lipid and lipid-like molecules’, ‘organic acids and derivatives’ and ‘organoheterocyclic compounds’. In pathway analysis, perturbed ‘vitamin B1 (thiamin) metabolism’, ‘de novo fatty acid biosynthesis’, ‘bile acid biosynthesis’ and ‘pentose phosphate pathway’ were detected, among others. Lipoprotein and lipid levels in NNRTIs were heterogeneous and could not be compared as a group. INSTIs compared to individual NNRTI types showed that HDL cholesterol was lower in INSTIs compared to nevirapine but higher in INSTIs compared to doravirine. In addition, LDL size was lower in INSTIs and nevirapine compared to doravirine. NNRTIs show more heterogeneous cardiometabolic effects than INSTIs, which hampers the comparison between these two classes of drugs. Targeted lipoproteomic and lipid NMR spectroscopy showed that INSTI use was associated with a more unfavorable lipid profile compared to nevirapine, which was shifted to a more favorable profile for INSTI when substituting nevirapine for doravirine, with evidently higher fold changes. The cardiovascular disease risk profile seems more favorable in INSTIs compared to NNRTIs in untargeted metabolomic analysis using mass-spectrometry.
Predictive Efficacy of Dual Therapies Combining Integrase Strand Transfer Inhibitors with Second-Generation Non-Nucleoside Reverse Transcriptase Inhibitors Following HIV-1 Treatment Failure in Cameroon: Implications for the Use of a Long-Acting Therapeutic Strategy in Low- and Middle-Income Countries
Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients. We genotyped the HIV-1 pol gene using Sanger sequencing and assessed acquired RAMs to NNRTIs and INSTIs in patients failing treatment from March 2019 to December 2023. Drug susceptibility was interpreted using Stanford HIVdb v9.5, and statistical analyses were performed using SPSS v22. Of 130 successfully genotyped participants (median age (IQR): 38 (27–46) years; 59.2% female), 92.3% had RAMs to NNRTIs and 1.5% to INSTIs. Prevailing RAMs were Y181C (32.3%) among NNRTIs and R263K (0.7%) among INSTIs. Among 2nd-Gen-NNRTIs, etravirine, doravirine and rilpivirine had 43.85%, 41.54% and 38.46% genotypic sensitivity, respectively. Among INSTIs, we found 97.69% efficacy for dolutegravir/bictegravir, 96.15% for cabotegravir and 92.31% for elvitegravir/raltegravir. The overall predictive efficacy of DT was lower among participants who failed 1st-Gen-NNRTI (p < 0.001); with etravirine + dolutegravir/bictegravir combination showing the highest score (43.8%). Conclusively, DT combining INSTIs + 2nd-Gen-NNRTIs might be suboptimal in the context of previous ART failure, especially with NNRTI-based treatment in low- and middle-income countries. The general data clearly indicate that without resistance testing, it is nearly impossible to use long-acting dual therapies in previously failing patients.
Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa
Background HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. Methods During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient’s treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. Results Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p  = 0.042) and integrase inhibitor RAM (4%; 2/56; p  = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation ( n  = 13) in protease and K65R ( n  = 5), K103N ( n  = 7) and M184V (n = 5) in reverse transcriptase. Conclusions HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy—A Scoping Review
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Switch to long-acting cabotegravir and rilpivirine in virologically suppressed adults with HIV in Africa (CARES): week 48 results from a randomised, multicentre, open-label, non-inferiority trial
Long-acting injectable cabotegravir and rilpivirine is licensed for individualised treatment of HIV-1 infection in resource-rich settings. Additional evidence is required to support use in African treatment programmes where demographic factors, viral subtypes, previous treatment, and delivery and monitoring approaches differ. The aim of this study was to determine whether switching to long-acting therapy with injections every 8 weeks is non-inferior to daily oral therapy in Africa. CARES is a randomised, open-label, non-inferiority trial being conducted at eight sites in Uganda, Kenya, and South Africa. Participants with HIV viral load below 50 copies per mL on oral antiretroviral therapy and no history of virological failure were randomly assigned (1:1; web-based, permuted blocks) to receive cabotegravir (600 mg) and rilpivirine (900 mg) by intramuscular injection every 8 weeks, or to continue oral therapy. Viral load was monitored every 24 weeks. The primary outcome was week 48 viral load below 50 copies per mL, assessed with the Food and Drug Administration snapshot algorithm (non-inferiority margin 10 percentage points) in the intention-to-treat exposed population. This trial is registered with the Pan African Clinical Trials Registry (202104874490818) and is ongoing up to 96 weeks. Between Sept 1, 2021, and Aug 31, 2022, we enrolled 512 participants (295 [58%] female; 380 [74%] previous non-nucleoside reverse transcriptase inhibitor exposure). Week 48 viral load was below 50 copies per mL in 246 (96%) of 255 participants in the long-acting therapy group and 250 (97%) of 257 in the oral therapy group (difference –0·8 percentage points; 95% CI –3·7 to 2·3), demonstrating non-inferiority (confirmed in per-protocol analysis). Two participants had virological failure in the long-acting therapy group, both with drug resistance; none had virological failure in the oral therapy group. Adverse events of grade 3 or greater severity occurred in 24 (9%) participants on long-acting therapy and ten (4%) on oral therapy; one participant discontinued long-acting therapy (for injection-site reaction). Long-acting therapy had non-inferior efficacy compared with oral therapy, with a good safety profile, and can be considered for African treatment programmes. Janssen.
Dolutegravir versus ritonavir-boosted lopinavir both with dual nucleoside reverse transcriptase inhibitor therapy in adults with HIV-1 infection in whom first-line therapy has failed (DAWNING): an open-label, non-inferiority, phase 3b trial
Doubts exist regarding optimal second-line treatment options for HIV-1-infected patients in resource-limited settings. We assessed safety and efficacy of dolutegravir compared with ritonavir-boosted lopinavir, plus two nucleoside reverse transcriptase inhibitors (NRTIs) in adults in whom previous first-line antiretroviral therapy with a non-nucleoside reverse transcriptase inhibitor (NNRTI) plus two NRTIs has failed. DAWNING is a phase 3b, open-label, parallel-group, non-inferiority, active-controlled trial done at 58 sites in 13 countries. Eligible adults were aged at least 18 years and, during at least 6 months of treatment with a first-line treatment containing an NNRTI and two NRTIs, had virological failure (confirmed HIV-1 RNA ≥400 copies per mL). Participants were randomly assigned by a central randomisation system to receive oral dolutegravir (50 mg once daily) or ritonavir-boosted lopinavir (800 mg lopinavir plus 200 mg ritonavir once daily or 400 mg plus 100 mg twice daily), plus two investigator-selected NRTIs (at least one fully active based on resistance testing at screening). The primary outcome was the proportion of participants achieving viral suppression (defined as plasma HIV-1 RNA <50 copies per mL) at week 48 using the snapshot algorithm and a non-inferiority margin of −12%. The primary analysis was done in an intention-to-treat-exposed (ITT-E) population of participants who received at least one dose of study medication, according to original group assignment. Safety was analysed in all participants who received at least one dose of study drug, according to which drug was received. The study was registered at ClinicalTrials.gov, number NCT02227238, and viiv-studyregister.com, number 200304. Between Dec 11, 2014, and June 27, 2016, 968 adults were screened and 627 were randomly assigned to the dolutegravir group (n=312) or the ritonavir-boosted lopinavir group (n=315). Three patients in the ritonavir-boosted lopinavir group did not receive study medication and so 624 were included in the ITT-E population. At week 48, 261 (84%) of 312 participants in the dolutegravir group achieved viral suppression compared with 219 (70%) of 312 in the ritonavir-boosted lopinavir group (adjusted difference 13·8%; 95% CI 7·3–20·3). Non-inferiority was achieved on the basis of the 95% CI of the adjusted treatment difference having a lower bound greater than −12% (prespecified non-inferiority margin). Because the lower bound of the 95% CI is greater than zero (7·3%), superiority of dolutegravir was also concluded (p<0·0001). The safety profile for dolutegravir was favourable compared with that of ritonavir-boosted lopinavir. More grade 2–4 drug-related adverse events occurred with ritonavir-boosted lopinavir than dolutegravir (44 [14%] of 310 with ritonavir-boosted lopinavir vs 11 [4%] of 314 with dolutegravir), mainly driven by gastrointestinal disorders. When administered with two NRTIs, dolutegravir was superior to ritonavir-boosted lopinavir at 48 weeks and can be considered a suitable option for second-line treatment. ViiV Healthcare.
A Review of the Toxicity of HIV Medications
Antiretroviral therapy has changed human immunodeficiency virus (HIV) infection from a near-certainly fatal illness to one that can be managed chronically. More patients are taking antiretroviral drugs (ARVs) for longer periods of time, which naturally results in more observed toxicity. Overdose with ARVs is not commonly reported. The most serious overdose outcomes have been reported in neonates who were inadvertently administered supratherapeutic doses of HIV prophylaxis medications. Typical ARV regimens include a “backbone” of two nucleoside reverse transcriptase inhibitors (NRTI) and a “base” of either a protease inhibitor (PI) or nonnucleoside reverse transcriptase inhibitor. New classes of drugs called entry inhibitors and integrase inhibitors have also emerged. Older NRTIs were associated with mitochondrial toxicity, but this is less common in the newer drugs, emtricitabine, lamivudine, and tenofovir. Mitochondrial toxicity results from NRTI inhibition of a mitochondrial DNA polymerase. Mitochondrial toxicity manifests as myopathy, neuropathy, hepatic failure, and lactic acidosis. Routine lactate assessment in asymptomatic patients is not indicated. Lactate concentration should be obtained in patients taking NRTIs who have fatigue, nausea, vomiting, or vague abdominal pain. Mitochondrial toxicity can be fatal and is treated by supportive care and discontinuing NRTIs. Metabolic cofactors like thiamine, carnitine, and riboflavin may be helpful in managing mitochondrial toxicity. Lipodystrophy describes changes in fat distribution and lipid metabolism that have been attributed to both PIs and NRTIs. Lipodystrophy consists of loss of fat around the face (lipoatrophy), increase in truncal fat, and hypertriglyceridemia. There is no specific treatment of lipodystrophy. Clinicians should be able to recognize effects of chronic toxicity of ARVs, especially mitochondrial toxicity.
HIV-1 Antiretroviral Resistance
The efficacy of an antiretroviral (ARV) treatment regimen depends on the activity of the regimen’s individual ARV drugs and the number of HIV-1 mutations required for the development of resistance to each ARV — the genetic barrier to resistance. ARV resistance impairs the response to therapy in patients with transmitted resistance, unsuccessful initial ARV therapy and multiple virological failures. Genotypic resistance testing is used to identify transmitted drug resistance, provide insight into the reasons for virological failure in treated patients, and help guide second-line and salvage therapies. In patients with transmitted drug resistance, the virological response to a regimen selected on the basis of standard genotypic testing approaches the responses observed in patients with wild-type viruses. However, because such patients are at a higher risk of harbouring minority drug-resistant variants, initial ARV therapy in this population should contain a boosted protease inhibitor (PI) — the drug class with the highest genetic barrier to resistance. In patients receiving an initial ARV regimen with a high genetic barrier to resistance, the most common reasons for virological failure are nonadherence and, potentially, pharmacokinetic factors or minority transmitted drug-resistant variants. Among patients in whom first-line ARVs have failed, the patterns of drug-resistance mutations and cross-resistance are often predictable. However, the extent of drug resistance correlates with the duration of uncontrolled virological replication. Second-line therapy should include the continued use of a dual nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-containing backbone, together with a change in the non-NRTI component, most often to an ARV belonging to a new drug class. The number of available fully active ARVs is often diminished with each successive treatment failure. Therefore, a salvage regimen is likely to be more complicated in that it may require multiple ARVs with partial residual activity and compromised genetic barriers of resistance to attain complete virological suppression. A thorough examination of the patient’s ARV history and prior resistance tests should be performed because genotypic and/or phenotypic susceptibility testing is often not sufficient to identify drug-resistant variants that emerged during past therapies and may still pose a threat to a new regimen. Phenotypic testing is also often helpful in this subset of patients. ARVs used for salvage therapy can be placed into the following hierarchy: (i) ARVs belonging to a previously unused drug class; (ii) ARVs belonging to a previously used drug class that maintain significant residual antiviral activity; (iii) NRTI combinations, as these often appear to retain in vivo virological activity, even in the presence of reduced in vitro NRTI susceptibility; and rarely (iv) ARVs associated with previous virological failure and drug resistance that appear to have possibly regained their activity as a result of viral reversion to wild type. Understanding the basic principles of HIV drug resistance is helpful in guiding individual clinical decisions and the development of ARV treatment guidelines.