Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
555 result(s) for "Nuisance parameter"
Sort by:
A GENERAL THEORY OF HYPOTHESIS TESTS AND CONFIDENCE REGIONS FOR SPARSE HIGH DIMENSIONAL MODELS
We consider the problem of uncertainty assessment for low dimensional components in high dimensional models. Specifically, we propose a novel decorrelated score function to handle the impact of high dimensional nuisance parameters. We consider both hypothesis tests and confidence regions for generic penalized M-estimators. Unlike most existing inferential methods which are tailored for individual models, our method provides a general framework for high dimensional inference and is applicable to a wide variety of applications. In particular, we apply this general framework to study five illustrative examples: linear regression, logistic regression, Poisson regression, Gaussian graphical model and additive hazards model. For hypothesis testing, we develop general theorems to characterize the limiting distributions of the decorrelated score test statistic under both null hypothesis and local alternatives. These results provide asymptotic guarantees on the type I errors and local powers. For confidence region construction, we show that the decorrelated score function can be used to construct point estimators that are asymptotically normal and semiparametrically efficient. We further generalize this framework to handle the settings of misspecified models. Thorough numerical results are provided to back up the developed theory.
Tests for high dimensional generalized linear models
We consider testing regression coefficients in high dimensional generalized linear models. By modifying the test statistic of Goeman and his colleagues for large but fixed dimensional settings, we propose a new test, based on an asymptotic analysis, that is applicable for diverging dimensions and is robust to accommodate a wide range of link functions. The power properties of the tests are evaluated asymptotically under two families of alternative hypotheses. In addition, a test in the presence of nuisance parameters is also proposed. The tests can provide p-values for testing significance of multiple gene sets, whose application is demonstrated in a case-study on lung cancer.
A NOTE ON INFORMATION BIAS AND EFFICIENCY OF COMPOSITE LIKELIHOOD
Although the properties of inferences based on a composite likelihood are well established, they can be surprising, leading to misleading results. In this note, we show by example that the variance of a maximum composite likelihood estimator can increase when the nuisance parameters are known, rather than estimated. In addition, we show that estimators based on more independent component likelihoods can be less efficient than those based on fewer such likelihoods, and that incorporating higher-dimensional marginal densities can also lead to a less efficient inference. The role of information bias is highlighted to understand why these paradoxical phenomena occur.
Marginal Inferential Models: Prior-Free Probabilistic Inference on Interest Parameters
The inferential models (IM) framework provides prior-free, frequency-calibrated, and posterior probabilistic inference. The key is the use of random sets to predict unobservable auxiliary variables connected to the observable data and unknown parameters. When nuisance parameters are present, a marginalization step can reduce the dimension of the auxiliary variable which, in turn, leads to more efficient inference. For regular problems, exact marginalization can be achieved, and we give conditions for marginal IM validity. We show that our approach provides exact and efficient marginal inference in several challenging problems, including a many-normal-means problem. In nonregular problems, we propose a generalized marginalization technique and prove its validity. Details are given for two benchmark examples, namely, the Behrens-Fisher and gamma mean problems.
MINIMAX ESTIMATION IN SPARSE CANONICAL CORRELATION ANALYSIS
Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. This paper considers the problem of estimating the leading canonical correlation directions in high-dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for many high-dimensional applications involving massive data sets. However, there has been few theoretical justification available in the literature. In this paper, we establish rate-optimal nonasymptotic minimax estimation with respect to an appropriate loss function for a wide range of model spaces. Two interesting phenomena are observed. First, the minimax rates are not affected by the presence of nuisance parameters, namely the covariance matrices of the two sets of random variables, though they need to be estimated in the canonical correlation analysis problem. Second, we allow the presence of the residual canonical correlation directions. However, they do not influence the minimax rates under a mild condition on eigengap. A generalized sin-theta theorem and an empirical process bound for Gaussian quadratic forms under rank constraint are used to establish the minimax upper bounds, which may be of independent interest.
Bias-Reduced Doubly Robust Estimation
Over the past decade, doubly robust estimators have been proposed for a variety of target parameters in causal inference and missing data models. These are asymptotically unbiased when at least one of two nuisance working models is correctly specified, regardless of which. While their asymptotic distribution is not affected by the choice of root- n consistent estimators of the nuisance parameters indexing these working models when all working models are correctly specified, this choice of estimators can have a dramatic impact under misspecification of at least one working model. In this article, we will therefore propose a simple and generic estimation principle for the nuisance parameters indexing each of the working models, which is designed to improve the performance of the doubly robust estimator of interest, relative to the default use of maximum likelihood estimators for the nuisance parameters. The proposed approach locally minimizes the squared first-order asymptotic bias of the doubly robust estimator under misspecification of both working models and results in doubly robust estimators with easy-to-calculate asymptotic variance. It moreover improves the stability of the weights in those doubly robust estimators which invoke inverse probability weighting. Simulation studies confirm the desirable finite-sample performance of the proposed estimators. Supplementary materials for this article are available online.
Hybrid Cramér-Rao Bound for Quantum Bayes Point Estimation with Nuisance Parameters
We develop a hybrid framework for quantum parameter estimation in the presence of nuisance parameters. In this scheme, the parameters of interest are treated as fixed non-random parameters while nuisance parameters are integrated out with respect to a prior (random parameters). Within this setting, we introduce the hybrid partial quantum Fisher information matrix (hpQFIM), defined by prior-averaging the nuisance block of the QFIM and taking a Schur complement, and derive a corresponding Cramér–Rao-type lower bound on the hybrid risk. We establish the structural properties of the hpQFIM, including inequalities that bracket it between computationally tractable approximations, as well as limiting behaviors under extreme priors. Operationally, the hybrid approach improves over pure point estimation since the optimal measurement for the parameters of interest depends only on the prior distribution of the nuisance, rather than on its unknown value. We illustrate the framework with analytically solvable qubit models and numerical examples, clarifying how partial prior information on nuisance variables can be systematically exploited in quantum metrology.
Nuisance-parameter-free changepoint detection in non-stationary series
Many changepoint detection procedures rely on the estimation of nuisance parameters (like long-run variance). If a change has occurred, estimators might be biased and data adaptive rules for the choice of tuning parameters might not work as expected. If the data are not stationary, this becomes more challenging. The aim of this paper is to present two changepoint tests, which involve neither nuisance nor tuning parameters. This is achieved by combing self-normalization and wild bootstrap. We investigate the asymptotic behavior and show the consistency of the bootstrap under the hypothesis as well as under the alternative, assuming mild conditions on the weak dependence of the time series. As a by-product, a changepoint estimator is introduced and its consistency is proved. The results are illustrated through a simulation study. The new completely data-driven tests are applied to real data examples from finance and hydrology.
Bayesian Discrepancy Measure: Higher-Order and Skewed Approximations
The aim of this paper is to discuss both higher-order asymptotic expansions and skewed approximations for the Bayesian discrepancy measure used in testing precise statistical hypotheses. In particular, we derive results on third-order asymptotic approximations and skewed approximations for univariate posterior distributions, including cases with nuisance parameters, demonstrating improved accuracy in capturing posterior shape with little additional computational cost over simple first-order approximations. For third-order approximations, connections to frequentist inference via matching priors are highlighted. Moreover, the definition of the Bayesian discrepancy measure and the proposed methodology are extended to the multivariate setting, employing tractable skew-normal posterior approximations obtained via derivative matching at the mode. Accurate multivariate approximations for the Bayesian discrepancy measure are then derived by defining credible regions based on an optimal transport map that transforms the skew-normal approximation to a standard multivariate normal distribution. The performance and practical benefits of these higher-order and skewed approximations are illustrated through two examples.
Semiparametric M-estimation with non-smooth criterion functions
We are interested in the estimation of a parameter θ that maximizes a certain criterion function depending on an unknown, possibly infinite-dimensional nuisance parameter h . A common estimation procedure consists in maximizing the corresponding empirical criterion, in which the nuisance parameter is replaced by a nonparametric estimator. In the literature, this research topic, commonly referred to as semiparametric M -estimation, has received a lot of attention in the case where the criterion function satisfies certain smoothness properties. In certain applications, these smoothness conditions are, however, not satisfied. The aim of this paper is therefore to extend the existing theory on semiparametric M -estimators, in order to cover non-smooth M -estimators as well. In particular, we develop ‘high-level’ conditions under which the proposed M -estimator is consistent and has an asymptotic limit. We also check these conditions for a specific example of a semiparametric M -estimator coming from the area of classification with missing data.