Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
47,908
result(s) for
"Number Theory"
Sort by:
A brief history of numbers
The world around us is saturated with numbers. They are a fundamental pillar of our modern society, and accepted and used with hardly a second thought. But how did this state of affairs come to be? In this book, Leo Corry tells the story behind the idea of number from the early days of the Pythagoreans, up until the turn of the twentieth century.
Sums of Reciprocals of Fractional Parts and Multiplicative Diophantine Approximation
by
Velani, Sanju
,
Beresnevich, Victor
,
Haynes, Alan
in
Continued fractions
,
Diophantine analysis
,
Diophantine approximation
2020
There are two main interrelated goals of this paper. Firstly we investigate the sums
Number theory : a historical approach
\"The natural numbers have been studied for thousands of years, yet most undergraduate textbooks present number theory as a long list of theorems with little mention of how these results were discovered or why they are important. This book emphasizes the historical development of number theory, describing methods, theorems, and proofs in the contexts in which they originated, and providing an accessible introduction to one of the most fascinating subjects in mathematics.Written in an informal style by an award-winning teacher, Number Theory covers prime numbers, Fibonacci numbers, and a host of other essential topics in number theory, while also telling the stories of the great mathematicians behind these developments, including Euclid, Carl Friedrich Gauss, and Sophie Germain. This one-of-a-kind introductory textbook features an extensive set of problems that enable students to actively reinforce and extend their understanding of the material, as well as fully worked solutions for many of these problems. It also includes helpful hints for when students are unsure of how to get started on a given problem. Uses a unique historical approach to teaching number theory Features numerous problems, helpful hints, and fully worked solutions Discusses fun topics like Pythagorean tuning in music, Sudoku puzzles, and arithmetic progressions of primes Includes an introduction to Sage, an easy-to-learn yet powerful open-source mathematics software package Ideal for undergraduate mathematics majors as well as non-math majors Digital solutions manual (available only to professors) \"-- Provided by publisher.
Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume
We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We
then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of
eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume
and the dynamics of their geodesic flows.
Hypergeometric functions over finite fields
by
Fuselier, Jenny
,
Swisher, Holly
,
Ramakrishna, Ravi Kumar
in
Finite fields (Algebra)
,
Hypergeometric functions
2022
Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we
consider period functions for hypergeometric type algebraic varieties over finite fields and consequently study hypergeometric functions
over finite fields in a manner that is parallel to that of the classical hypergeometric functions. Using a comparison between the
classical gamma function and its finite field analogue the Gauss sum, we give a systematic way to obtain certain types of hypergeometric
transformation and evaluation formulas over finite fields and interpret them geometrically using a Galois representation perspective. As
an application, we obtain a few finite field analogues of algebraic hypergeometric identities, quadratic and higher transformation
formulas, and evaluation formulas. We further apply these finite field formulas to compute the number of rational points of certain
hypergeometric varieties.
Professor Stewart's incredible numbers
A delightful introduction to the numbers that surround us, from the common (Pi and 2) to the uncommon but no less consequential (1.059463 and 43,252,003,274,489,856,000). Along the way, Stewart takes us through prime numbers, cubic equations, the concept of zero, the possible positions on the Rubik's Cube, the role of numbers in human history, and beyond!
Overlapping Iterated Function Systems from the Perspective of Metric Number Theory
2023
In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous
result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is
determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated
function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems
that our results apply to include those arising from Bernoulli convolutions, the
For each
Last of all, we introduce a property of an iterated function system that we call being consistently
separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous.
We include several explicit examples of consistently separated iterated function systems.