Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,769 result(s) for "Nutrient interactions"
Sort by:
Nutrient interactions and arbuscular mycorrhizas: a meta-analysis of a mycorrhiza-defective mutant and wild-type tomato genotype pair
BACKGROUND AND AIMS: Arbuscular mycorrhizas (AM) enhance plant uptake of a range of mineral nutrients from the soil. Interactions between nutrients in the soil and plant, are complex, and can be affected by AM. Using a mycorrhiza-defective mutant tomato genotype (rmc) and its wild-type (76R), provides a novel method to study AM functioning. METHODS: We present a meta-analysis comparing tissue nutrient concentration (P, Zn, K, Ca, Cu, Mg, Mn, S, B, Na, Fe), biomass and mycorrhizal colonisation data between the 76R and rmc genotypes, across a number of studies that have used this pair of tomato genotypes. Particular attention is paid to interactions between soil P or soil Zn, with tissue nutrients. RESULTS: For most nutrients, the difference in concentration between genotypes was significantly affected either by soil P, soil Zn, or both. When soil P was deficient, AM were particularly beneficial in terms of uptake of not only P, but other nutrients as well. CONCLUSIONS: Colonisation by AMF significantly affects the uptake of many soil macro- and micro-nutrients. Furthermore, the soil P and Zn status also influences the difference in nutrient concentrations between mycorrhizal and non-mycorrhizal plants. The interactions identified by this meta-analysis provide a basis for future research in this area.
Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease
Hashimoto's thyroiditis (HT) and Graves’ disease (GD) are examples of autoimmune thyroid disease (AITD), the commonest autoimmune condition. Antibodies to thyroid peroxidase (TPO), the enzyme that catalyses thyroid-hormone production and antibodies to the receptor for the thyroid-stimulating hormone, are characteristic of HT and GD, respectively. It is presently accepted that genetic susceptibility, environmental factors, including nutritional factors and immune disorders contribute to the development of AITD. Aiming to investigate the effect of iodine, iron and selenium in the risk, pathogenesis and treatment of thyroid disease, PubMed and the Cochrane Library were searched for relevant publications to provide a narrative review. Iodine: chronic exposure to excess iodine intake induces autoimmune thyroiditis, partly because highly-iodinated thyroglobulin (Tg) is more immunogenic. The recent introduction of universal salt iodisation can have a similar, although transient, effect. Iron: iron deficiency impairs thyroid metabolism. TPO is a haem enzyme that becomes active only after binding haem. AITD patients are frequently iron-deficient since autoimmune gastritis, which reduces iron absorption and coeliac disease which causes iron loss, are frequent co-morbidities. In two-thirds of women with persistent symptoms of hypothyroidism despite appropriate levothyroxine therapy, restoration of serum ferritin above 100 µg/l ameliorated symptoms. Selenium: selenoproteins are essential to thyroid action. In particular, the glutathione peroxidases remove excessive hydrogen peroxide produced there for the iodination of Tg to form thyroid hormones. There is evidence from observational studies and randomised controlled trials that selenium, probably as selenoproteins, can reduce TPO-antibody concentration, hypothyroidism and postpartum thyroiditis. Appropriate status of iodine, iron and selenium is crucial to thyroid health.
The balance between food and dietary supplements in the general population
In the past, vitamins and minerals were used to cure deficiency diseases. Supplements nowadays are used with the aim of reducing the risk of chronic diseases of which the origins are complex. Dietary supplement use has increased in the UK over recent decades, contributing to the nutrient intake in the population, but not necessarily the proportion of the population that is sub-optimally nourished; therefore, not reducing the proportion below the estimated average requirement and potentially increasing the number at risk of an intake above the safety limits. The supplement nutrient intake may be objectively monitored using circulation biomarkers. The influence of the researcher in how the supplements are grouped and how the nutrient intakes are quantified may however result in different conclusions regarding their nutrient contribution, the associations with biomarkers, in general, and dose–response associations specifically. The diet might be sufficient in micronutrients, but lacking in a balanced food intake. Since public-health nutrition guidelines are expressed in terms of foods, there is potentially a discrepancy between the nutrient-orientated supplement and the quality of the dietary pattern. To promote health, current public-health messages only advocate supplements in specific circumstances, but not in optimally nourished populations.
β-Carotene in the human body: metabolic bioactivation pathways – from digestion to tissue distribution and excretion
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Interaction Between Macro‐ and Micro-Nutrients in Plants
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis . This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro‐ and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Nutrient–nutrient interactions: competition, bioavailability, mechanism and function in health and diseases
The Nutrition Society Spring Conference 2018, held in Glasgow, brought together experts focusing on the interaction between different nutrients and how this impacts absorption, metabolism and health from biochemical and physiological perspectives. This cross-cutting theme was examined from a range of perspectives, bringing together experts on topics ranging from food processing to the impact of inflammation on nutrient status. Two plenary lectures provided a food landscape and lifecourse background to the proceedings, with on the first day a focus on processed/ultra-processed foods and their nutrient composition and, on the second day, a plenary lecture exploring the role that nutrient–nutrient interactions within the maternal diet have for the lifelong health of the offspring. The meeting was framed around three symposia, examining the competition and bioavailability of dietary components, nutrient–nutrient interactions and their role in protection from chronic diseases and the mechanisms of nutrient–nutrient interactions. The meeting ended with a round table, and an overall conclusion highlighting the opportunities to derive further understanding of the short- and long-term implications of diets through the study of nutrient–nutrient interactions.
A Model Nutrition Control System in Potato Tissue Culture and Its Influence on Plant Elemental Composition
Low or excessive soil fertility is a major constraint to potato production. The influence of each individual nutrient element on potato plants under field studies remains ambiguous due to the influence of environmental variations. Creating an in vitro model plant with deficient or excessive nutrient content will provide a more controlled study and allow for a better understanding of how the concentration of one element can affect the uptake of other elements. Here we designed a tissue culture-based nutrition control system to systematically analyze the effects of essential nutrients on potato plants. Insufficient or excessive nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) contents were created by modifying the Murashige and Skoog (MS) medium. Deficient to toxic plant nutrient statuses were successfully defined by the evaluation of dry biomass and morphological symptoms. The results showed that plant shoot growth, nutrient uptake and content, and nutrient interactions were all significantly impacted by the changes in the MS media nutrient concentrations. These tissue culture systems can be successfully used for further investigations of nutrient effects on potato production in response to biotic and abiotic stresses in vitro.
Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning
Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.
Nutrient limitation on terrestrial plant growth – modeling the interaction between nitrogen and phosphorus
• Growth of plants in terrestrial ecosystems is often limited by the availability of nitrogen (N) or phosphorous (P) Liebig’s law of the minimum states that the nutrient in least supply relative to the plant’s requirement will limit the plant’s growth. An alternative to the law of the minimum is the multiple limitation hypothesis (MLH) which states that plants adjust their growth patterns such that they are limited by several resources simultaneously. • We use a simple model of plant growth and nutrient uptake to explore the consequences for the plant’s relative growth rate of letting plants invest differentially in N and P uptake. • We find a smooth transition between limiting elements, in contrast to the strict transition in Liebig’s law of the minimum. At N : P supply ratios where the two elements simultaneously limit growth, an increase in either of the nutrients will increase the growth rate because more resources can be allocated towards the limiting element, as suggested by the multiple limitation hypothesis. However, the further the supply ratio deviates from these supply rates, the more the plants will follow the law of the minimum. • Liebig’s law of the minimum will in many cases be a useful first‐order approximation.
Maize yield and economic return with controlled-release urea
Balancing fertilization of nitrogen, phosphorus, potassium and the use of controlled-release fertilizers are valuable practices for increasing yield and nutrient use efficiency. This 8-year field study was conducted using a mixture of controlled-release urea and soluble urea to evaluate maize yields, net returns and nutrient interactions in the North China Plain. The treatments included nitrogen application rates at 0, 150, 300 and 450 kg ha −1 using mixture; phosphorus application rates at 0, 16, 32 and 48 kg ha −1 ; and potassium application rates at 0, 125, 250 and 375 kg ha −1 . The treatment using only soluble urea as the nitrogen source represented the standard farming practice in the region, with nitrogen, phosphorus and potassium being applied at 300, 16 and 250 kg ha −1 , respectively. The results showed that the net return of the treatment with nitrogen, phosphorus and potassium being applied at 300, 16 and 250 kg ha −1 , was increased by 14.8% over that of the farming practice treatment. Notably, controlled-release urea reduced the risks of decreased yields associated with price fluctuations. Multiple regression analysis results (R 2  = 0.9726, P  = 0.009) suggested that the coefficients of nitrogen × phosphorus, nitrogen × potassium were synergistic, while that of phosphorus × potassium was antagonistic. The interaction effects of the two factors decreased in the order nitrogen × potassium > nitrogen × phosphorus > phosphorus × potassium. The optimal maize yield was 9.2–9.3 t ha −1 at nitrogen, phosphorus and potassium application rates of 276–290, 27–29 and 210–226 kg ha −1 , respectively. This study demonstrates that balanced fertilization based on controlled-release urea and soluble urea blend can improve maize yields and net returns.