Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
58,911 result(s) for "Nutrients in soil"
Sort by:
Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits
Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars. The high ash content associated with alkaline chemical species such as KHCO3 and CaCO3, verified by XRD analysis, made chicken manure and coffee husk biochars potential liming agents for remediating acidic soils. High Ca and K contents in chicken manure and coffee husk biomass can significantly replace conventional sources of K (mostly imported in Brazil) and Ca, suggesting a high agronomic value for these biochars. High-ash biochars, such as chicken manure and coffee husk, produced at low-temperatures (350 and 450°C) exhibited high CEC values, which can be considered as a potential applicable material to increase nutrient retention in soil. Therefore, the agronomic value of the biochars in this study is predominantly regulated by the nutrient richness of the biomass, but an increase in pyrolysis temperature to 750°C can strongly decrease the adsorptive capacities of chicken manure and coffee husk biochars. A diagram of the agronomic potential and environmental benefits is presented, along with some guidelines to relate biochar properties with potential agronomic and environmental uses. Based on biochar properties, research needs are identified and directions for future trials are delineated.
Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution
In order to maintain high yields and protect the environment, the replacement of chemical fertilizers with organic ones has received increasing attention in recent years. A 2-year field experiment (2015-2016) was carried out to assess the effects of substituting equal amounts of mineral fertilizer with organic manure on the yield, dry matter (DM), and nitrogen (N) uptake of spring maize (Zea mays L.) and on the mineral N (Nmin) distribution in the soil profile. The treatments included chemical fertilizer; different amounts of maize straw, cow manure, and chicken manure; and an unfertilized control (CK). Compared with the chemical fertilizer treatments, equal amounts of substitutions with cow manure or chicken manure increased production, and a 25% nutrient substitution resulted in the best yield increase. Straw return had no effect on maize production, and 100% straw return resulted in reduced production. The N accumulation and DM content both exhibited a slow-fast-slow growth trend throughout the various growth stages, and the average N uptake and DM accumulation in response to the treatments followed the order of chicken manure > cow manure > chemical fertilizer > straw return > CK. The Nmin content in the profile not only increased as the Nmin application rate increased but also showed greater increases at certain depths than at the surface, indicating that excessive N led to leaching. These results suggest that an appropriate proportion of organic substitution not only provides enough nutrients but also improves the soil environment and leads to increased yields. This technique represents a practical method of continuously increasing production and reducing the risk of N leaching.
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.
Factors affecting variations of soil pH in different horizons in hilly regions
Soil pH is a key factor that controls soil nutrient availability, soil microbial activities, and crop growth and development. However, studies on the soil pH variations of cultivated lands in different horizons at the regional scale remain limited. In this work, 348 soil samples were collected from three soil horizons (A, B, and C) at 120 sites over the hilly region of Chongqing, southwestern China. Six topographic indicators, four climate parameters, and parent material were considered. Classification and regression trees (CARTs) were applied to investigate the relationships between soil pH and the variables in the A, B, and C horizons. Model performances were evaluated by root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination (R2). Results showed that soil pH increased obviously from the A to C horizons. Soil pH was predicted well by the forcing factors with the CART models in all horizons. RMSE, RRMSE, and R2 varied between 0.37 and 0.435, between 5.93 and 7.23%, and between 0.71 and 0.80, respectively. The relative importance of the studied variables to soil pH differed with the horizons. Annual temperature range (ATR), terrain wetness index (TWI), and Melton ruggedness number were critical factors that controlled soil pH variability in the A horizon. Parent material, precipitation of warmest quarter (PWQ), ATR, and TWI were important variables in the B horizon. Parent material, PWQ, ATR, and precipitation were key factors in the C horizon. The results are expected to provide valuable information for designing appropriate measurements for agricultural practices and preventing soil acidification.
Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana
Soil erosion is a multifactor threat to crop production and the environment. Most studies on soil erosion characterization have not focused on soil nutrient loss associated with erosion. The aim of this study was therefore to quantify the magnitude of nutrient loss through soil erosion under different cropping systems and amendments to inform agronomic practices in sub-Saharan Africa (SSA). A field experiment was carried out on runoff plots with different cropping systems (sole maize, sole cowpea, sole maize and maize intercropped with soybean) as main plots and soil amendments (biochar, NPK (Nitrogen +Phosphorus +Potassium) fertilizer, NPK + biochar and a control (no amendment)) constituting the subplots in a randomized complete block design. For each block, a bare plot was included to assess the efficiency of the different crop and soil management practices on soil erosion. The study was carried out in three consecutive cropping seasons in the semi-deciduous forest zone of Ghana. The bare plots had the highest amounts of nitrogen (N), phosphorus (P), and potassium (K) eroded: 33.88, 12.35 and 12.75 kg ha-1 respectively followed by the control plots with magnitude of 20.43, 8.42 and 7.87 kg ha-1 respectively for N, P and K. Sole maize had the highest amounts of nutrient loss: 19.71, 8.12 and 7.27 for N, P and K respectively compared to all the other cropping systems where the losses varied respectively from 12.38 to 17.12, 6.67 to 7.49 and 5.81 to 6.75 kg ha-1 The legume-based cropping systems under inorganic fertilizer and biochar management effectively reduced nutrient loss more than all other treatment combinations. The off-site effect of soil erosion expressed as enrichment ratio (ER) was higher for all plots, which received inorganic fertilizer inputs varying from 1.93 to 3.06 while the other treatments had ERs of 1.51 to 2.03. The ERs of fine soil particles were greater than 1 (ranging from 1.14 to 3.6) being relatively higher than that of coarse particles (sand) with values below 1 (ranging from 0.62 to 0.88). The least cumulative monetary value of nutrient loss (30.82 US$ ha-1) was observed under cowpea cropping system which received NPK + BC treatment. Soil erosion affected directly soil nutrient depletion through nutrient loss; however, integrated soil fertility management associated with legume-based cropping systems can be alternative options to reducing its effects on croplands in SSA.
Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain
The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.
Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0-20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.
Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth
Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root development, in combination with indirect mechanisms, such as mineral solubilisation (including solubilisation via acidification, redox, chelation and hydrolysis).
Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times
Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.
Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol
Low soil fertility, high rates of fertilizer application and low yields and quality are major problems in intensive banana production in acid soils of south China. A field experiment was carried out for two years to determine the optimum management practices for maximizing soil health and banana yield and quality. The experiment consisted of an unamended control (CK) and lime (Lime), calcium magnesium phosphate fertilizer (CMP), organic fertilizer (OF), and organic fertilizer combined with calcium magnesium phosphate fertilizer (OFC) treatments. Soil nutrient concentrations and banana shoot biomass, nutrient uptake, yield and fruit quality were determined. Application of lime and CMP was found to increase soil pH and nutrient availability and increase banana yield. Yet, the banana biomass and yields in the Lime and CMP treatments were significantly lower than those in the OF and OFC treatments in which soil organic matter (SOM) content increased. Total soluble solids and soluble sugar contents increased in the CMP and organic fertilizer treatments. A consistent increase in Mg concentrations in banana leaves over the two years in the CMP and organic fertilizer treatments indicates that Mg is essential for banana production and quality. Short-term adding Mg from banana corms increased total soluble solids and soluble sugar content. The application of organic fertilizer combined with CMP or Mg solution is therefore recommended to increase soil health and promote the yield and quality of banana in intensively managed plantations in subtropical regions.