Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,191 result(s) for "Obesity - microbiology"
Sort by:
Dietary modulation of the gut microbiota – a randomised controlled trial in obese postmenopausal women
The gut microbiota has been implicated in obesity and its progression towards metabolic disease. Dietary interventions that target the gut microbiota have been suggested to improve metabolic health. The aim of the present study was to investigate the effect of interventions with Lactobacillus paracasei F19 or flaxseed mucilage on the gut microbiota and metabolic risk markers in obesity. A total of fifty-eight obese postmenopausal women were randomised to a single-blinded, parallel-group intervention of 6-week duration, with a daily intake of either L. paracasei F19 (9·4 × 1010 colony-forming units), flaxseed mucilage (10 g) or placebo. Quantitative metagenomic analysis of faecal DNA was performed to identify the changes in the gut microbiota. Diet-induced changes in metabolic markers were explored using adjusted linear regression models. The intake of flaxseed mucilage over 6 weeks led to a reduction in serum C-peptide and insulin release during an oral glucose tolerance test (P< 0·05) and improved insulin sensitivity measured by Matsuda index (P< 0·05). Comparison of gut microbiota composition at baseline and after 6 weeks of intervention with flaxseed mucilage showed alterations in abundance of thirty-three metagenomic species (P< 0·01), including decreased relative abundance of eight Faecalibacterium species. These changes in the microbiota could not explain the effect of flaxseed mucilage on insulin sensitivity. The intake of L. paracasei F19 did not modulate metabolic markers compared with placebo. In conclusion, flaxseed mucilage improves insulin sensitivity and alters the gut microbiota; however, the improvement in insulin sensitivity was not mediated by the observed changes in relative abundance of bacterial species.
Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized Trial
BackgroundGut microbiota likely impact obesity and metabolic diseases. We evaluated the changes in gut microbiota after surgical versus medical weight loss in adults with diabetes and obesity.MethodsWe performed 16S rRNA amplicon sequencing to identify the gut microbial composition at baseline and at 10% weight loss in adults with diabetes who were randomized to medical weight loss (MWL, n = 4), adjustable gastric banding (AGB, n = 4), or Roux-en-Y gastric bypass (RYGB, n = 4).ResultsAll participants were female, 75% reported black race with mean age of 51 years. At similar weight loss amount and glycemic improvement, the RYGB group had the most number of bacterial species (10 increased, 1 decreased) that significantly changed (p < 0.05) in relative abundance. Alpha-diversity at follow-up was significantly lower in AGB group compared to MWL and RYGB (observed species for AGB vs. MWL, p = 0.0093; AGB vs. RYGB, p = 0.0093). The relative abundance of Faecalibacterium prausnitzii increased in 3 participants after RYGB, 1 after AGB, and 1 after MWL.ConclusionsAt similar weight loss and glycemic improvement, the greatest alteration in gut microbiota occurred after RYGB with an increase in the potentially beneficial bacterium, F. prausnitzii. Gut microbial diversity tended to decrease after AGB and increase after RYGB and MWL. Future studies are needed to determine the impact and durability of gut microbial changes over time and their role in long-term metabolic improvement after bariatric surgery in adults with type 2 diabetes.Clinical Trial RegistrationNCTDK089557—ClinicalTrials.gov
Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study
Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus1. The gut microbiota is a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated type 2 diabetes mellitus or hypertension3–8. Since the administration of A. muciniphila has never been investigated in humans, we conducted a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers; 40 were enrolled and 32 completed the trial. The primary end points were safety, tolerability and metabolic parameters (that is, insulin resistance, circulating lipids, visceral adiposity and body mass). Secondary outcomes were gut barrier function (that is, plasma lipopolysaccharides) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010A. muciniphila bacteria either live or pasteurized for three months was safe and well tolerated. Compared to placebo, pasteurized A. muciniphila improved insulin sensitivity (+28.62 ± 7.02%, P = 0.002), and reduced insulinemia (−34.08 ± 7.12%, P = 0.006) and plasma total cholesterol (−8.68 ± 2.38%, P = 0.02). Pasteurized A. muciniphila supplementation slightly decreased body weight (−2.27 ± 0.92 kg, P = 0.091) compared to the placebo group, and fat mass (−1.37 ± 0.82 kg, P = 0.092) and hip circumference (−2.63 ± 1.14 cm, P = 0.091) compared to baseline. After three months of supplementation, A. muciniphila reduced the levels of the relevant blood markers for liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (clinical trial no. NCT02637115) shows that the intervention was safe and well tolerated and that supplementation with A. muciniphila improves several metabolic parameters.
Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake
ObjectivesThis study aimed to explore the effects of an isocaloric Mediterranean diet (MD) intervention on metabolic health, gut microbiome and systemic metabolome in subjects with lifestyle risk factors for metabolic disease.DesignEighty-two healthy overweight and obese subjects with a habitually low intake of fruit and vegetables and a sedentary lifestyle participated in a parallel 8-week randomised controlled trial. Forty-three participants consumed an MD tailored to their habitual energy intakes (MedD), and 39 maintained their regular diets (ConD). Dietary adherence, metabolic parameters, gut microbiome and systemic metabolome were monitored over the study period.ResultsIncreased MD adherence in the MedD group successfully reprogrammed subjects’ intake of fibre and animal proteins. Compliance was confirmed by lowered levels of carnitine in plasma and urine. Significant reductions in plasma cholesterol (primary outcome) and faecal bile acids occurred in the MedD compared with the ConD group. Shotgun metagenomics showed gut microbiome changes that reflected individual MD adherence and increase in gene richness in participants who reduced systemic inflammation over the intervention. The MD intervention led to increased levels of the fibre-degrading Faecalibacterium prausnitzii and of genes for microbial carbohydrate degradation linked to butyrate metabolism. The dietary changes in the MedD group led to increased urinary urolithins, faecal bile acid degradation and insulin sensitivity that co-varied with specific microbial taxa.ConclusionSwitching subjects to an MD while maintaining their energy intake reduced their blood cholesterol and caused multiple changes in their microbiome and metabolome that are relevant in future strategies for the improvement of metabolic health.
Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial
There is intense interest about whether modulating gut microbiota can impact systemic metabolism. We investigated the safety of weekly oral fecal microbiota transplantation (FMT) capsules from healthy lean donors and their ability to alter gut microbiota and improve metabolic outcomes in patients with obesity. FMT-TRIM was a 12-week double-blind randomized placebo-controlled pilot trial of oral FMT capsules performed at a single US academic medical center. Between August 2016 and April 2018, we randomized 24 adults with obesity and mild-moderate insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR] between 2.0 and 8.0) to weekly healthy lean donor FMT versus placebo capsules for 6 weeks. The primary outcome, assessed by intention to treat, was change in insulin sensitivity between 0 and 6 weeks as measured by hyperinsulinemic euglycemic clamps. Additional metabolic parameters were evaluated at 0, 6, and 12 weeks, including HbA1c, body weight, body composition by dual-energy X-ray absorptiometry, and resting energy expenditure by indirect calorimetry. Fecal samples were serially collected and evaluated via 16S V4 rRNA sequencing. Our study population was 71% female, with an average baseline BMI of 38.8 ± 6.7 kg/m2 and 41.3 ± 5.1 kg/m2 in the FMT and placebo groups, respectively. There were no statistically significant improvements in insulin sensitivity in the FMT group compared to the placebo group (+5% ± 12% in FMT group versus -3% ± 32% in placebo group, mean difference 9%, 95% CI -5% to 28%, p = 0.16). There were no statistically significant differences between groups for most of the other secondary metabolic outcomes, including HOMA-IR (mean difference 0.2, 95% CI -0.9 to 0.9, p = 0.96) and body composition (lean mass mean difference -0.1 kg, 95% CI -1.9 to 1.6 kg, p = 0.87; fat mass mean difference 1.2 kg, 95% CI -0.6 to 3.0 kg, p = 0.18), over the 12-week study. We observed variable engraftment of donor bacterial groups among FMT recipients, which persisted throughout the 12-week study. There were no significant differences in adverse events (AEs) (10 versus 5, p = 0.09), and no serious AEs related to FMT. Limitations of this pilot study are the small sample size, inclusion of participants with relatively mild insulin resistance, and lack of concurrent dietary intervention. Weekly administration of FMT capsules in adults with obesity results in gut microbiota engraftment in most recipients for at least 12 weeks. Despite engraftment, we did not observe clinically significant metabolic effects during the study. ClinicalTrials.gov NCT02530385.
Discrepant gut microbiota markers for the classification of obesity-related metabolic abnormalities
The gut microbiota (GM) is related to obesity and other metabolic diseases. To detect GM markers for obesity in patients with different metabolic abnormalities and investigate their relationships with clinical indicators, 1,914 Chinese adults were enrolled for 16S rRNA gene sequencing in this retrospective study. Based on GM composition, Random forest classifiers were constructed to screen the obesity patients with (Group OA) or without metabolic diseases (Group O) from healthy individuals (Group H), and high accuracies were observed for the discrimination of Group O and Group OA (areas under the receiver operating curve (AUC) equal to 0.68 and 0.76, respectively). Furthermore, six GM markers were shared by obesity patients with various metabolic disorders ( Bacteroides , Parabacteroides , Blautia , Alistipes , Romboutsia and Roseburia ). As for the discrimination with Group O, Group OA exhibited low accuracy (AUC = 0.57). Nonetheless, GM classifications to distinguish between Group O and the obese patients with specific metabolic abnormalities were not accurate (AUC values from 0.59 to 0.66). Common biomarkers were identified for the obesity patients with high uric acid, high serum lipids and high blood pressure, such as Clostridium XIVa, Bacteroides and Roseburia . A total of 20 genera were associated with multiple significant clinical indicators. For example, Blautia , Romboutsia , Ruminococcus2 , Clostridium sensu stricto and Dorea were positively correlated with indicators of bodyweight (including waistline and body mass index) and serum lipids (including low density lipoprotein, triglyceride and total cholesterol). In contrast, the aforementioned clinical indicators were negatively associated with Bacteroides , Roseburia , Butyricicoccus , Alistipes, Parasutterella , Parabacteroides and Clostridium IV . Generally, these biomarkers hold the potential to predict obesity-related metabolic abnormalities, and interventions based on these biomarkers might be beneficial to weight loss and metabolic risk improvement.
Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial
ObjectiveThe impact of faecal microbiota transplantation (FMT) on microbiota engraftment in patients with metabolic syndrome is uncertain. We aimed to study whether combining FMT with lifestyle modification could enhance the engraftment of favourable microbiota in obese patients with type 2 diabetes mellitus (T2DM).DesignIn this double-blind, randomised, placebo-controlled trial, 61 obese subjects with T2DM were randomly assigned to three parallel groups: FMT plus lifestyle intervention (LSI), FMT alone, or sham transplantation plus LSI every 4 weeks for up to week 12. FMT solution was prepared from six healthy lean donors. Faecal metagenomic sequencing was performed at baseline, weeks 4, 16 and 24. The primary outcome was the proportion of subjects acquiring ≥20% of microbiota from lean donors at week 24.ResultsProportions of subjects acquiring ≥20% of lean-associated microbiota at week 24 were 100%, 88.2% and 22% in the FMT plus LSI, FMT alone, and sham plus LSI groups, respectively (p<0.0001). Repeated FMTs significantly increased the engraftment of lean-associated microbiota (p<0.05). FMT with or without LSI increased butyrate-producing bacteria. Combining LSI and FMT led to increase in Bifidobacterium and Lactobacillus compared with FMT alone (p<0.05). FMT plus LSI group had reduced total and low-density lipoprotein cholesterol and liver stiffness at week 24 compared with baseline (p<0.05).ConclusionRepeated FMTs enhance the level and duration of microbiota engraftment in obese patients with T2DM. Combining lifestyle intervention with FMT led to more favourable changes in recipients’ microbiota and improvement in lipid profile and liver stiffness.Trial registration number NCT03127696.
Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men
There is growing interest in understanding how diet affects the intestinal microbiota, including its possible associations with systemic diseases such as metabolic syndrome. Here we report a comprehensive and deep microbiota analysis of 14 obese males consuming fully controlled diets supplemented with resistant starch (RS) or non-starch polysaccharides (NSPs) and a weight-loss (WL) diet. We analyzed the composition, diversity and dynamics of the fecal microbiota on each dietary regime by phylogenetic microarray and quantitative PCR (qPCR) analysis. In addition, we analyzed fecal short chain fatty acids (SCFAs) as a proxy of colonic fermentation, and indices of insulin sensitivity from blood samples. The diet explained around 10% of the total variance in microbiota composition, which was substantially less than the inter-individual variance. Yet, each of the study diets induced clear and distinct changes in the microbiota. Multiple Ruminococcaceae phylotypes increased on the RS diet, whereas mostly Lachnospiraceae phylotypes increased on the NSP diet. Bifidobacteria decreased significantly on the WL diet. The RS diet decreased the diversity of the microbiota significantly. The total 16S ribosomal RNA gene signal estimated by qPCR correlated positively with the three major SCFAs, while the amount of propionate specifically correlated with the Bacteroidetes. The dietary responsiveness of the individual’s microbiota varied substantially and associated inversely with its diversity, suggesting that individuals can be stratified into responders and non-responders based on the features of their intestinal microbiota.
The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population
INTRODUCTION AND OBJECTIVES: An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS. DESIGN: A total of 88 subjects at increased MetS risk were fed a high saturated fat diet (HS) for 4 weeks (baseline), then randomised onto one of the five experimental diets for 24 weeks: HS; high monounsaturated fat (MUFA)/high glycemic index (GI) (HM/HGI); high MUFA/low GI (HM/LGI); high carbohydrate (CHO)/high GI (HC/HGI); and high CHO/low GI (HC/LGI). Dietary intakes, MetS biomarkers, faecal bacteriology and SCFA concentrations were monitored. RESULTS: High MUFA diets did not affect individual bacterial population numbers but reduced total bacteria and plasma total and LDL-cholesterol. The low fat, HC diets increased faecal Bifidobacterium ( P =0.005, for HC/HGI; P =0.052, for HC/LGI) and reduced fasting glucose and cholesterol compared to baseline. HC/HGI also increased faecal Bacteroides ( P =0.038), whereas HC/LGI and HS increased Faecalibacterium prausnitzii ( P =0.022 for HC/HGI and P =0.018, for HS). Importantly, changes in faecal Bacteroides numbers correlated inversely with body weight ( r =−0.64). A total bacteria reduction was observed for high fat diets HM/HGI and HM/LGI ( P =0.023 and P =0.005, respectively) and HS increased faecal SCFA concentrations ( P <0.01). CONCLUSION: This study provides new evidence from a large-scale dietary intervention study that HC diets, irrespective of GI, can modulate human faecal saccharolytic bacteria, including bacteroides and bifidobacteria. Conversely, high fat diets reduced bacterial numbers, and in the HS diet, increased excretion of SCFA, which may suggest a compensatory mechanism to eliminate excess dietary energy.
Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction
The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P ( n  = 21) versus a heart-healthy, calorie-restricted (CR, n  = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial. Here, in a follow-up of a clinical study, the authors show that protein pacing and intermittent fasting improves gut symptomatology and microbial diversity, as well as reduces visceral fat compared to a heart-healthy, calorie-restricted diet matched for overall energy intake and expenditure in free-living humans.