Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
4,078
result(s) for
"Ocean waves Mathematical models."
Sort by:
Waves in Oceanic and Coastal Waters
Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.
Waves and wave forces on coastal and ocean structures
by
Hudspeth, Robert T
in
Coastal and Ocean Engineering
,
Environmental Management & Planning
,
Fluid dynamics
2006
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system...
A guide to modeling coastal morphology
by
Roelvink, Dano
,
Reniers, Ad
in
Civil Engineering (including Earthquake and Tsunami)
,
Coast changes
,
Coast changes -- Mathematical models
2011,2012
Process-based morphodynamic Modeling is one of the relatively new tools at the disposal of coastal scientists, engineers and managers. On paper, it offers the possibility to analyse morphological processes and to investigate the effects of various measures one might consider to alleviate some problems. For these to be applied in practice, a model should be relatively straightforward to set up. It should be accurate enough to represent the details of interest, it should run long enough and robustly to see the real effects happen, and the physical processes represented in such a way that the sediment generally goes in the right direction at the right rate. Next, practitioners must be able to judge if the patterns and outcomes of the model are realistic and finally, translate these colour pictures and vector plots to integrated parameters that are relevant to the client or end user. In a nutshell, this book provides an in-depth review of ways to model coastal processes, including many hands-on exercises.
Advanced numerical models for simulating tsunami waves and runup
by
Yeh, Harry
,
Liu, Philip L.-F
,
Synolakis, Costas
in
Civil Engineering (including Earthquake and Tsunami)
,
Coastal and Ocean Engineering
,
Congresses
2008
This review volume is divided into two parts. The first part includes five review papers on various numerical models. Pedersen provides a brief but thorough review of the theoretical background for depth-integrated wave equations, which are employed to simulate tsunami runup. LeVeque and George describe high-resolution finite volume methods for solving the nonlinear shallow water equations. The focus of their discussion is on the applications of these methods to tsunami runup.
Numerical modelling of wave energy converters : state-of-the-art techniques for single devices and arrays
by
Folley, Matt
in
Electric generators
,
Electric power production
,
Electric power production -- Mathematical models
2016
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques.
Rogue waves : mathematical theory and applications in physics
by
Ling, Liming
,
Guo, Boling
,
Tian, Lixin
in
algebro-geometric reduction
,
bilinear transformation
,
Darboux transformation
2017
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering.
Contents
The Research Process for Rogue Waves
Construction of Rogue Wave Solution by the Generalized Darboux Transformation
Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method
The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model