Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
767
result(s) for
"Oceanografi, hydrologi, vattenresurser"
Sort by:
Decision Support for Lake Restoration: A Case Study in Swedish Freshwater Bodies
2023
A considerable number of lakes in Sweden have high phosphorus internal loading from the sediments which cause cyanobacterial blooms every summer. Due to potential risks with such blooms for human health, drinking water supply, and ecosystem services, measures need to be taken to control the phosphorus content. Measures to control the phosphorus input from the surrounding land has been in focus. However, the measures have not been sufficient. This is because phosphorus deposited at the bottom of the lakes for many years are finally starting to leak to the water phase when the decomposition of sediments leads to anoxic conditions. In order to determine effective and efficient lake restoration measures, methods for lake restoration decision support by a multi-criteria analysis and the application of a decision analysis are developed. The multi-criteria analysis includes the determination of costs, longevity, and efficacy of six common lake restoration measures to reduce internal phosphorous loads in two lakes selected as a case study. The results show that aluminum treatment combines a highest efficacy with a high-cost efficiency being thus the optimal identified measure. The method involves adding an aluminum solution to the lakes’ sediment, which binds phosphorus, preventing it to be released to the water column. The multi-criteria model is integrated to a decision analytical model. The decision analytical model is used to identify the monetary socio-economic and environmental boundaries for the implementation of the optimal lake restoration measure.
Journal Article
Developing Capacity for Transdisciplinary Studies of Changing Ocean Systems
by
Drexler, Michael
,
Collins, Sinead
,
Vargas, Cristian
in
Oceanografi, hydrologi, vattenresurser
,
Oceanography, Hydrology, Water Resources
2025
Addressing global challenges such as climate change requires large-scale collective actions, but such actions are hindered by the complexity and scale of the problem and the uncertainty in the long-term benefit of short-term actions (Jagers et al., 2019). In addition to climate change, socio-ecological systems face the cumulative pressures associated with resource needs, technology development, industrial expansion, and area conflicts. In marine systems, this has been called “the blue acceleration” (Jouffray et al., 2020) and is referred to as “socio-ecological pressures” in this paper. These socio-ecological pressures reduce our ability to reach the UN Sustainable Development Goals and meet the challenges of the UN Ocean Decade, and require integrating knowledge within a shared conceptual framework. For example, achieving sustainable growth must integrate ecological, socioeconomic, and governance perspectives on a larger scale by considering ecological impacts, ecosystem carrying capacities, economic trade-offs, social acceptability, and policy realities. This requires capacity development whereby actors unite to bridge disciplinary boundaries to meet challenges of complex systems.
Journal Article
Mapping the world’s free-flowing rivers
2019
Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.
Journal Article
Human domination of the global water cycle absent from depictions and perceptions
by
Ellison, David
,
Krause, Stefan
,
Pinay Gilles
in
Anthropocene
,
Boreal ecosystems
,
Climate change
2019
Human water use, climate change and land conversion have created a water crisis for billions of individuals and many ecosystems worldwide. Global water stocks and fluxes are estimated empirically and with computer models, but this information is conveyed to policymakers and researchers through water cycle diagrams. Here we compiled a synthesis of the global water cycle, which we compared with 464 water cycle diagrams from around the world. Although human freshwater appropriation now equals half of global river discharge, only 15% of the water cycle diagrams depicted human interaction with water. Only 2% of the diagrams showed climate change or water pollution—two of the central causes of the global water crisis—which effectively conveys a false sense of water security. A single catchment was depicted in 95% of the diagrams, which precludes the representation of teleconnections such as ocean–land interactions and continental moisture recycling. These inaccuracies correspond with specific dimensions of water mismanagement, which suggest that flaws in water diagrams reflect and reinforce the misunderstanding of global hydrology by policymakers, researchers and the public. Correct depictions of the water cycle will not solve the global water crisis, but reconceiving this symbol is an important step towards equitable water governance, sustainable development and planetary thinking in the Anthropocene.Only about 15% of water cycle diagrams include human interaction with water, although human freshwater appropriation amounts to about half of global river discharge, according to an analysis of 464 water cycle diagrams and a synthesis of the global water cycle.
Journal Article
A tale of pipes and reactors
by
Casas-Ruiz, Joan P.
,
Obrador, Biel
,
Marcé, Rafael
in
Oceanografi, hydrologi, vattenresurser
,
Oceanography, Hydrology, Water Resources
2017
The potential for rivers to alter the flux of dissolved organic matter (DOM) from land to ocean is widely accepted. Yet anticipating when and where rivers behave as active reactors vs. passive pipes of DOM stands as a major knowledge gap in river biogeochemistry, resulting in uncertainties for global carbon models. Here, we investigate the controls on in-stream DOM dynamics by evaluating changes in DOM concentration and composition along several reaches of a medium-sized river network over one full hydrological year. Roughly half of the observations over time and space showed active reactor conditions and, among these, similar proportion of gains and losses was measured. High water residence times promoted the active over passive behavior of the reaches, while DOM properties and nitrate availability determined whether they supplied or removed DOM from the river. Among different DOM fractions, protein-like DOM both of terrestrial and aquatic origin seemed to drive bulk DOM patterns. Our study emphasizes the role of water residence time as a physical constraint for in-stream processes, and provides new insights into the key factors governing the net balance between in-stream gains and losses of DOM in rivers.
Journal Article
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
by
Northwood, Matthew
,
Gough, Christopher M
,
Cavagna Mauro
in
Atmosphere
,
Biosphere
,
Carbon dioxide
2020
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Measurement(s)net ecosystem exchange • carbon dioxide • water • energyTechnology Type(s)eddy covariance • measurement deviceSample Characteristic - Environmentterrestrial biome • atmosphereSample Characteristic - LocationEarth (planet)Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12295910
Journal Article
The delusive accuracy of global irrigation water withdrawal estimates
2022
Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.
Journal Article
Character and environmental lability of cyanobacteria-derived dissolved organic matter
by
Patriarca, Claudia
,
Tranvik, Lars J.
,
Hawkes, Jeffrey A.
in
Geochemistry
,
Geokemi
,
Oceanografi, hydrologi, vattenresurser
2021
Autotrophic dissolved organic matter (DOM) is central to the carbon biogeochemistry of aquatic systems, and the full complexity of autotrophic DOM has not been extensively studied, particularly by high-resolution mass spectrometry (HRMS). Terrestrial DOM tends to dominate HRMS studies in freshwaters due to the propensity of such compounds to ionize by negative mode electrospray, and possibly also because ionizable DOM produced by autotrophy is decreased to low steady-state concentrations by heterotrophic bacteria. In this study, we investigated the character of DOM produced by the widespread cyanobacteria Microcystis aeruginosa using high-pressure liquid chromatography—electrospray ionization—high-resolution mass spectrometry. M. aeruginosa produced thousands of detectable compounds in axenic culture. These compounds were chromatographically resolved and the majority were assigned to aliphatic formulas with a broad polarity range. We found that the DOM produced by M. aeruginosa was highly susceptible to removal by heterotrophic freshwater bacteria, supporting the hypothesis that this autotroph-derived organic material is highly labile and accordingly only seen at low concentrations in natural settings.
Journal Article
Organic carbon decomposition rates controlled by water retention time across inland waters
2016
Organic carbon decays as it travels through inland waters from soils to the sea. Analysis of data from across the continuum of inland and marine aquatic systems reveals that the rate of organic carbon decay depends on water retention time.
The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle
1
,
2
,
3
. Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question
2
,
4
,
5
,
6
, hampered by the absence of a common predictor of organic carbon decay rates
1
,
7
. Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 ± 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff
8
. We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.
Journal Article
Reactivity of dissolved organic matter in response to acid deposition
by
Kritzberg, Emma S.
,
Nilsson, P. Anders
,
Ekström, Sara M.
in
absorbance
,
Acid deposition
,
Acidification
2016
Fluvial export of organic matter from the terrestrial catchment to the aquatic system is a large and increasing carbon flux. The successful reduction in sulfuric acid deposition since the 1980s has been shown to enhance the mobility of organic matter in the soil, with more terrestrially derived dissolved organic matter (DOM) reaching aquatic systems. Changes in soil acidity also affect the quality of the DOM. In this study we explore the consequences this may have on the reactivity and turnover of the terrestrially derived DOM as it reaches the aquatic system. DOM of different quality (estimated by absorbance, fluorescence and size exclusion chromatography) was produced through extraction of boreal forest O-horizon soils from podzol at two sulfuric acid concentrations corresponding to natural throughfall in spruce forest in Southern Sweden around 1980 and today. Extraction was done using two different methods, i.e. field leaching and laboratory extraction. The DOM extracts were used to assess if differences in acidity generate DOM of different reactivity. Three reactivity experiments were performed: photodegradation by UV exposure, biodegradation by bacteria, and biodegradation after UV exposure. Reactivity was assessed by measuring loss of dissolved organic carbon and absorbance, change in fluorescence and molecular weight, and bacterial production. DOM extracted at lower sulfuric acid concentration was more susceptible to photooxidation, and less susceptible to bacterial degradation, than DOM extracted at a higher sulfuric acid concentration. Thus the relative importance of these two turnover processes may be altered with changes in acid deposition.
Journal Article