Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2,301 result(s) for "Oceanography, Hydrology, Water Resources"
Sort by:
Decision Support for Lake Restoration: A Case Study in Swedish Freshwater Bodies
A considerable number of lakes in Sweden have high phosphorus internal loading from the sediments which cause cyanobacterial blooms every summer. Due to potential risks with such blooms for human health, drinking water supply, and ecosystem services, measures need to be taken to control the phosphorus content. Measures to control the phosphorus input from the surrounding land has been in focus. However, the measures have not been sufficient. This is because phosphorus deposited at the bottom of the lakes for many years are finally starting to leak to the water phase when the decomposition of sediments leads to anoxic conditions. In order to determine effective and efficient lake restoration measures, methods for lake restoration decision support by a multi-criteria analysis and the application of a decision analysis are developed. The multi-criteria analysis includes the determination of costs, longevity, and efficacy of six common lake restoration measures to reduce internal phosphorous loads in two lakes selected as a case study. The results show that aluminum treatment combines a highest efficacy with a high-cost efficiency being thus the optimal identified measure. The method involves adding an aluminum solution to the lakes’ sediment, which binds phosphorus, preventing it to be released to the water column. The multi-criteria model is integrated to a decision analytical model. The decision analytical model is used to identify the monetary socio-economic and environmental boundaries for the implementation of the optimal lake restoration measure.
Developing Capacity for Transdisciplinary Studies of Changing Ocean Systems
Addressing global challenges such as climate change requires large-scale collective actions, but such actions are hindered by the complexity and scale of the problem and the uncertainty in the long-term benefit of short-term actions (Jagers et al., 2019). In addition to climate change, socio-ecological systems face the cumulative pressures associated with resource needs, technology development, industrial expansion, and area conflicts. In marine systems, this has been called “the blue acceleration” (Jouffray et al., 2020) and is referred to as “socio-ecological pressures” in this paper. These socio-ecological pressures reduce our ability to reach the UN Sustainable Development Goals and meet the challenges of the UN Ocean Decade, and require integrating knowledge within a shared conceptual framework. For example, achieving sustainable growth must integrate ecological, socioeconomic, and governance perspectives on a larger scale by considering ecological impacts, ecosystem carrying capacities, economic trade-offs, social acceptability, and policy realities. This requires capacity development whereby actors unite to bridge disciplinary boundaries to meet challenges of complex systems.
Mapping the world’s free-flowing rivers
Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them. A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.
Human domination of the global water cycle absent from depictions and perceptions
Human water use, climate change and land conversion have created a water crisis for billions of individuals and many ecosystems worldwide. Global water stocks and fluxes are estimated empirically and with computer models, but this information is conveyed to policymakers and researchers through water cycle diagrams. Here we compiled a synthesis of the global water cycle, which we compared with 464 water cycle diagrams from around the world. Although human freshwater appropriation now equals half of global river discharge, only 15% of the water cycle diagrams depicted human interaction with water. Only 2% of the diagrams showed climate change or water pollution—two of the central causes of the global water crisis—which effectively conveys a false sense of water security. A single catchment was depicted in 95% of the diagrams, which precludes the representation of teleconnections such as ocean–land interactions and continental moisture recycling. These inaccuracies correspond with specific dimensions of water mismanagement, which suggest that flaws in water diagrams reflect and reinforce the misunderstanding of global hydrology by policymakers, researchers and the public. Correct depictions of the water cycle will not solve the global water crisis, but reconceiving this symbol is an important step towards equitable water governance, sustainable development and planetary thinking in the Anthropocene.Only about 15% of water cycle diagrams include human interaction with water, although human freshwater appropriation amounts to about half of global river discharge, according to an analysis of 464 water cycle diagrams and a synthesis of the global water cycle.
The delusive accuracy of global irrigation water withdrawal estimates
Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.
A retrospective on hydrological catchment modelling based on half a century with the HBV model
Hydrological catchment models are important tools that are commonly used as the basis for water resource management planning. In the 1960s and 1970s, the development of several relatively simple models to simulate catchment runoff started, and a number of so-called conceptual (or bucket-type) models were suggested. In these models, the complex and heterogeneous hydrological processes in a catchment are represented by a limited number of storage elements and the fluxes between them. While computer limitations were a major motivation for such relatively simple models in the early days, some of these models are still used frequently despite the vast increase in computational opportunities. The HBV (Hydrologiska Byråns Vattenbalansavdelning) model, which was first applied about 50 years ago in Sweden, is a typical example of a conceptual catchment model and has gained large popularity since its inception. During several model intercomparisons, the HBV model performed well despite (or because of) its relatively simple model structure. Here, the history of model development, from thoughtful considerations of different model structures to modelling studies using hundreds of catchments and cloud computing facilities, is described. Furthermore, the wide range of model applications is discussed. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will also face hydrologists in the coming decades.
A tale of pipes and reactors
The potential for rivers to alter the flux of dissolved organic matter (DOM) from land to ocean is widely accepted. Yet anticipating when and where rivers behave as active reactors vs. passive pipes of DOM stands as a major knowledge gap in river biogeochemistry, resulting in uncertainties for global carbon models. Here, we investigate the controls on in-stream DOM dynamics by evaluating changes in DOM concentration and composition along several reaches of a medium-sized river network over one full hydrological year. Roughly half of the observations over time and space showed active reactor conditions and, among these, similar proportion of gains and losses was measured. High water residence times promoted the active over passive behavior of the reaches, while DOM properties and nitrate availability determined whether they supplied or removed DOM from the river. Among different DOM fractions, protein-like DOM both of terrestrial and aquatic origin seemed to drive bulk DOM patterns. Our study emphasizes the role of water residence time as a physical constraint for in-stream processes, and provides new insights into the key factors governing the net balance between in-stream gains and losses of DOM in rivers.
Organic carbon decomposition rates controlled by water retention time across inland waters
Organic carbon decays as it travels through inland waters from soils to the sea. Analysis of data from across the continuum of inland and marine aquatic systems reveals that the rate of organic carbon decay depends on water retention time. The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle 1 , 2 , 3 . Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question 2 , 4 , 5 , 6 , hampered by the absence of a common predictor of organic carbon decay rates 1 , 7 . Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 ± 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff 8 . We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.
Browning of freshwaters
Browning of surface waters, as a result of increasing dissolved organic carbon and iron concentrations, is a widespread phenomenon with implications to the structure and function of aquatic ecosystems. In this article, we provide an overview of the consequences of browning in relation to ecosystem services, outline what the underlying drivers and mechanisms of browning are, and specifically focus on exploring potential mitigation measures to locally counteract browning. These topical concepts are discussed with a focus on Scandinavia, but are of relevance also to other regions. Browning is of environmental concern as it leads to, e.g., increasing costs and risks for drinking water production, and reduced fish production in lakes by limiting light penetration. While climate change, recovery from acidification, and land-use change are all likely factors contributing to the observed browning, managing the land use in the hydrologically connected parts of the landscape may be the most feasible way to counteract browning of natural waters.
Groundwater inflows control patterns and sources of greenhouse gas emissions from streams
Headwater streams can be important sources of carbon dioxide (CO₂) and methane (CH₄) to the atmosphere. However, the influence of groundwater–stream connectivity on the patterns and sources of carbon (C) gas evasion is still poorly understood. We explored these connections in the boreal landscape through a detailed study of a 1.4 km lake outlet stream that is hydrologically fed by multiple topographically driven groundwater input zones. We measured stream and groundwater dissolved organic C (DOC), CO₂, and CH₄ concentrations every 50 m biweekly during the ice-free period and estimated in-stream C gas production through a mass balance model and independent estimates of aquatic metabolism. The spatial pattern of C gas concentrations was consistent over time, with peaks of both CH₄ and CO₂ concentrations occurring after each groundwater input zone. Moreover, lateral C gas inputs from riparian soils were the major source of CO₂ and CH₄ to the stream. DOC mineralization and CH₄ oxidation within the stream accounted for 17–51% of stream CO₂ emissions, and this contribution was the greatest during relatively higher flows. Overall, our results illustrate how the nature and arrangement of groundwater flowpaths can organize patterns of stream C concentrations, transformations, and emissions by acting as a direct source of gases and by supplying organic substrates that fuel aquatic metabolism. Hence, refined assessments of how catchment structure influences the timing and magnitude of groundwater–stream connections are crucial for mechanistically understanding and scaling C evasion rates from headwaters.