Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
312
result(s) for
"Oculomotor behavior"
Sort by:
Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis
by
Grafman, Jordan
,
Simoncini, Claudio
,
Beeman, Mark
in
Attention
,
Attention - physiology
,
Awareness
2020
According to the Gestalt theorists, restructuring is an essential component of insight problem-solving, contributes to the \"Aha!\" experience, and is similar to the perceptual switch experienced when reinterpreting ambiguous figures. Previous research has demonstrated that pupil diameter increases during the perceptual switch of ambiguous figures, and indexes norepeinephrine functioning mediated by the locus coeruleus. In this study, we investigated if pupil diameter similarly predicts the switch into awareness people experience when solving a problem via insight. Additionally, we explored eye movement dynamics during the same task to investigate if the problem-solving strategies used are linked to specific oculomotor behaviors. In 38 participants, pupil diameter increased about 500 msec prior to solution only in trials for which subjects report having an insight. In contrast, participants increased their microsaccade rate only prior to non-insight solutions. Pupil dilation and microsaccades were not reliably related, but both appear to be robust markers of how people solve problems (with or without insight). The pupil size change seen when people have an \"Aha!\" moment represents an indicator of the switch into awareness of unconscious processes humans depend upon for insight, and suggests important involvement of norepinephrine, via the locus coeruleus, in sudden insight.
Journal Article
Oculomotor inhibition precedes temporally expected auditory targets
by
Carrasco, Marisa
,
Abeles, Dekel
,
Yuval-Greenberg, Shlomit
in
631/378/2649/1310
,
706/689/477/2811
,
Coupling
2020
Eye movements are inhibited prior to the onset of temporally-predictable visual targets. This oculomotor inhibition effect could be considered a marker for the formation of temporal expectations and the allocation of temporal attention in the visual domain. Here we show that eye movements are also inhibited before predictable auditory targets. In two experiments, we manipulate the period between a cue and an auditory target to be either predictable or unpredictable. The findings show that although there is no perceptual gain from avoiding gaze-shifts in this procedure, saccades and blinks are inhibited prior to predictable relative to unpredictable auditory targets. These findings show that oculomotor inhibition occurs prior to auditory targets. This link between auditory expectation and oculomotor behavior reveals a multimodal perception action coupling, which has a central role in temporal expectations.
Eye movements are inhibited prior to the occurrence of predictable visual events. Here the authors show that this inhibition is also found in the auditory domain, thus revealing a multimodal perception action coupling.
Journal Article
A temporal dependency account of attentional inhibition in oculomotor control
by
van Zoest, Wieske
,
Weaver, Matthew D.
,
Hickey, Clayton
in
Attention
,
Electroencephalography
,
Event-related potentials
2017
We used concurrent electroencephalogram (EEG) and eye tracking to investigate the role of covert attentional mechanisms in the control of oculomotor behavior. Human participants made speeded saccades to targets that were presented alongside salient distractors. By subsequently sorting trials based on whether the distractor was strongly represented or suppressed by the visual system – as evident in the accuracy (Exp. 1) or quality of the saccade (Exp. 2) – we could characterize and contrast pre-saccadic neural activity as a function of whether oculomotor control was established. Results show that saccadic behavior is strongly linked to the operation of attentional mechanisms in visual cortex. In Experiment 1, accurate saccades were preceded by attentional selection of the target – indexed by a target-elicited N2pc component – and by attentional suppression of the distractor – indexed by early and late distractor-elicited distractor positivity (Pd) components. In Experiment 2, the strength of distractor suppression predicted the degree to which the path of slower saccades would deviate away from the distractor en route to the target. However, results also demonstrated clear dissociations of covert and overt selective control, with saccadic latency in particular showing no relationship to the latency of covert selective mechanisms. Eye movements could thus be initiated prior to the onset of attentional ERP components, resulting in stimulus-driven behaviour. Taken together, the results indicate that attentional mechanisms play a role in determining saccadic behavior, but that saccade timing is not contingent on the deployment of attention. This creates a temporal dependency, whereby attention fosters oculomotor control only when attentional mechanisms are given sufficient opportunity to impact stimuli representations before an eye movement is executed.
•Used novel approach to concurrent eye-movement and EEG recordings.•Covert deployment of attention predicts character and accuracy of saccadic response.•No relationship between timing of attentional selection and timing of eye movements.•Temporal dependency between covert attentional selection and overt eye movements.•Eye movements only reflect operation of timely covert attentional mechanisms.
Journal Article
Location- and feature-based selection histories make independent, qualitatively distinct contributions to urgent visuomotor performance
by
Oor, Emily E
,
Stanford, Terrence R
,
Salinas, Emilio
in
Accuracy
,
Animals
,
Attention - physiology
2025
Attention mechanisms guide visuomotor behavior by weighing physical salience and internal goals to prioritize stimuli as choices for action. Although less well studied, selection history, which reflects multiple facets of experience with recent events, is increasingly recognized as a distinct source of attentional bias. To examine how selection history impacts saccadic choices, we trained two macaque monkeys to perform an urgent version of an oddball search task in which a red target appeared among three green distracters or vice versa. By imposing urgency, performance could be tracked continuously as it transitioned from uninformed guesses to informed choices as a function of processing time. This, in turn, permitted assessment of attentional control as manifest in motor biases, processing speed, and asymptotic accuracy. Here, we found that the probability of making a correct choice was strongly modulated by the histories of preceding target locations and target colors. Crucially, although both effects were gated by success (or reward), their dynamics were clearly distinct: whereas location history promoted a motor bias, color history modulated perceptual sensitivity, and these influences acted independently. Thus, combined selection histories can give rise to enormous swings in visuomotor performance even in simple tasks with highly discriminable stimuli.
Journal Article
Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies
by
Pokusaeva, Victoria O.
,
Symonova, Olga
,
Satapathy, Roshan
in
140/58
,
42/41
,
631/378/2613/1483
2024
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in
Drosophila
and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly’s lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations.
The circuitry underpinning visuomotor behaviors in flies is poorly understood. Here, the authors show that the underlying computations require bilateral electrical coupling to control turning dynamics and direction for effective course control.
Journal Article
The influence of emotional stimuli on the oculomotor system: A review of the literature
2018
In the past decade, more and more research has been investigating oculomotor behavior in relation to attentional selection of emotional stimuli. Whereas previous research on covert emotional attention demonstrates contradictory results, research on overt attention clearly shows the influence of emotional stimuli on attentional selection. The current review highlights studies that have used eye-movement behavior as the primary outcome measure in healthy populations and focusses on the evidence that emotional stimuli—in particular, threatening stimuli—affect temporal and spatial dynamics of oculomotor programming. The most prominent results from these studies indicate that attentional selection of threatening stimuli is under bottom-up control. Moreover, threatening stimuli seem to have the greatest impact on oculomotor behavior through biased processing via the magnocellular pathway. This is consistent with an evolutionary account of threat processing, which claims a pivotal role for a subcortical network including pulvinar, superior colliculus, and amygdala. Additionally, I suggest a neurobiological model that considers possible mechanisms by which emotional stimuli could affect oculomotor behavior. The present review confirms the relevance of eye-movement measurements in relation to researching emotion in order to elucidate processes involved in emotional modulation of visual and attentional selection.
Journal Article
Cognitive load influences oculomotor behavior in natural scenes
2021
Cognitive neuroscience researchers have identified relationships between cognitive load and eye movement behavior that are consistent with oculomotor biomarkers for neurological disorders. We develop an adaptive visual search paradigm that manipulates task difficulty and examine the effect of cognitive load on oculomotor behavior in healthy young adults. Participants (N = 30) free-viewed a sequence of 100 natural scenes for 10 s each, while their eye movements were recorded. After each image, participants completed a 4 alternative forced choice task in which they selected a target object from one of the previously viewed scenes, among 3 distracters of the same object type but from alternate scenes. Following two correct responses, the target object was selected from an image increasingly farther back (N-back) in the image stream; following an incorrect response, N decreased by 1. N-back thus quantifies and individualizes cognitive load. The results show that response latencies increased as N-back increased, and pupil diameter increased with N-back, before decreasing at very high N-back. These findings are consistent with previous studies and confirm that this paradigm was successful in actively engaging working memory, and successfully adapts task difficulty to individual subject’s skill levels. We hypothesized that oculomotor behavior would covary with cognitive load. We found that as cognitive load increased, there was a significant decrease in the number of fixations and saccades. Furthermore, the total duration of saccades decreased with the number of events, while the total duration of fixations remained constant, suggesting that as cognitive load increased, subjects made fewer, longer fixations. These results suggest that cognitive load can be tracked with an adaptive visual search task, and that oculomotor strategies are affected as a result of greater cognitive demand in healthy adults.
Journal Article
Oculomotor inhibition reflects temporal expectations
by
Carrasco, Marisa
,
Abeles, Dekel
,
Yuval-Greenberg, Shlomit
in
Alpha Rhythm - physiology
,
Alpha-oscillations
,
Anticipation, Psychological - physiology
2019
The accurate extraction of signals out of noisy environments is a major challenge of the perceptual system. Forming temporal expectations and continuously matching them with perceptual input can facilitate this process. In humans, temporal expectations are typically assessed using behavioral measures, which provide only retrospective but no real-time estimates during target anticipation, or by using electrophysiological measures, which require extensive preprocessing and are difficult to interpret. Here we show a new correlate of temporal expectations based on oculomotor behavior. Observers performed an orientation-discrimination task on a central grating target, while their gaze position and EEG were monitored. In each trial, a cue preceded the target by a varying interval (“foreperiod”). In separate blocks, the cue was either predictive or non-predictive regarding the timing of the target. Results showed that saccades and blinks were inhibited more prior to an anticipated regular target than a less-anticipated irregular one. This consistent oculomotor inhibition effect enabled a trial-by-trial classification according to interval-regularity. Additionally, in the regular condition the slope of saccade-rate and drift were shallower for longer than shorter foreperiods, indicating their adjustment according to temporal expectations. Comparing the sensitivity of this oculomotor marker with those of other common predictability markers (e.g. alpha-suppression) showed that it is a sensitive marker for cue-related anticipation. In contrast, temporal changes in conditional probabilities (hazard-rate) modulated alpha-suppression more than cue-related anticipation. We conclude that pre-target oculomotor inhibition is a correlate of temporal predictions induced by cue-target associations, whereas alpha-suppression is more sensitive to conditional probabilities across time.
•Saccades and blinks are inhibited prior to predictable targets.•Pre-target oculomotor inhibition can be used as an index of temporal expectations.•This index is sensitive and direct, and is measured while predictions are made, unlike retrospective behavioral measures.•EEG Alpha amplitude is correlated with the hazard rate and reflects conditional probabilities.•There is no evidence that the oculomotor index reflects conditional probabilities.
Journal Article
Precise visuomotor transformations underlying collective behavior in larval zebrafish
by
Harpaz, Roy
,
Nguyen, Minh Nguyet
,
Bahl, Armin
in
631/114/116
,
631/378/2629/1409
,
631/378/3919
2021
Complex schooling behaviors result from local interactions among individuals. Yet, how sensory signals from neighbors are analyzed in the visuomotor stream of animals is poorly understood. Here, we studied aggregation behavior in larval zebrafish and found that over development larvae transition from overdispersed groups to tight shoals. Using a virtual reality assay, we characterized the algorithms fish use to transform visual inputs from neighbors into movement decisions. We found that young larvae turn away from virtual neighbors by integrating and averaging retina-wide visual occupancy within each eye, and by using a winner-take-all strategy for binocular integration. As fish mature, their responses expand to include attraction to virtual neighbors, which is based on similar algorithms of visual integration. Using model simulations, we show that the observed algorithms accurately predict group structure over development. These findings allow us to make testable predictions regarding the neuronal circuits underlying collective behavior in zebrafish.
How visual social information informs movement is unclear. Here, the authors characterise the algorithm zebrafish use to transform visual inputs from neighbours into movement decisions during collective swimming behavior. The authors can also predict the neural circuits involved in transforming the visual input into movement decisions.
Journal Article
The dorsal premotor cortex encodes the step-by-step planning processes for goal-directed motor behavior in humans
2022
The dorsal premotor cortex (PMd) plays an essential role in visually guided goal-directed motor behavior. Although there are several planning processes for achieving goal-directed behavior, the separate neural processes are largely unknown. Here, we created a new visuo-goal task to investigate the step-by-step planning processes for visuomotor and visuo-goal behavior in humans. Using functional magnetic resonance imaging, we found activation in different portions of the bilateral PMd during each processing step. In particular, the activated area for rule-based visuomotor and visuo-goal mapping was located at the ventrorostral portion of the bilateral PMd, that for action plan specification was at the dorsocaudal portion of the left PMd, that for transformation was at the rostral portion of the left PMd, and that for action preparation was at the caudal portion of the bilateral PMd. Thus, the left PMd was involved throughout all of the processes, but the right PMd was involved only in rule-based visuomotor and visuo-goal mapping and action preparation. The locations related to each process were generally spatially separated from each other, but they overlapped partially. These findings revealed that there are functional subregions in the bilateral PMd in humans and these subregions form a functional gradient to achieve goal-directed behavior.
Journal Article