Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Offner imaging spectrometer"
Sort by:
Optical Design of Improved Offner Imaging Spectrometer
by
Cui, Dongsen
,
Huang, Yong
,
Song, Chong
in
Improved Offner imaging spectrometer
,
Offner imaging spectrometer
,
Optical design
2021
An improved Offner imaging spectrometer was proposed based on the optical system characteristics of Offner imaging spectrometer, which can ensure perfect imaging quality in a wider annular region. The operating wavelength of the improved Offner imaging spectrometer ranges from 900nm to 1700nm, and the magnification is 1. Improved Offner imaging spectrometer can be obtained by changing the meniscus lens position and further optimizing the design. The results indicate that the improved Offner imaging spectrometer can effectively improve compactness and lightweight, and reduce the difficulty of optical adjustment, which is conducive to the stability of practical application.
Journal Article
Geometric Aberration Theory of Offner Imaging Spectrometers
2019
A third-order aberration theory has been developed for the Offner imaging spectrometer comprising an extended source; two concave mirrors; a convex diffraction grating; and an image plane. Analytic formulas of the spot diagram are derived for tracing rays through the system based on Fermat’s principle. The proposed theory can be used to discuss in detail individual aberrations of the system such as coma, spherical aberration and astigmatism, and distortion together with the focal conditions. It has been critically evaluated as well in a comparison with exact ray tracing constructed using the commercial software ZEMAX. In regard to the analytic formulas, the results show a high degree of practicality.
Journal Article
TSC-1 Offner Spectrometer Prototype Characterization
by
Poshyachinda, Saran
,
Wanajaroen, Weerapot
,
Chartsiriwattana, Pearachad
in
Collaboration
,
Consortia
,
Costs
2024
The Thai Space Consortium (TSC) has undertaken the development of an Offner spectrometer prototype for the TSC-1 satellite mission, aiming to enhance Earth observation capabilities. Through systematic parameter selection and radiometric analyses, optimal performance of the hyperspectral imager within established specifications was achieved in the previous study. The design phase involved selecting a two-mirror off-axis telescope coupled with the Offner spectrometer for its diffraction-limited performance. Rigorous testing validated the prototype’s alignment with simulated performance, affirming its ability to meet demanding Earth observation requirements. The experimental results demonstrate that the Offner spectrometer prototype has been successfully developed. The spatial resolution ranges between 21.0 and 24.1 µm, and the spectral resolution ranges between 7.3 and 8.7 nm, with no significant distortion. Furthermore, the signal-to-noise ratio at 550 nm is 100. This achievement positions the TSC at the forefront of innovative Earth observation instrumentation in Thailand, with implications for future space missions requiring precise and efficient hyperspectral imaging.
Journal Article
A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer
2014
Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid.
Journal Article