Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
267
result(s) for
"Olivary Nucleus - physiology"
Sort by:
Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis
2020
The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.
Journal Article
Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum
2018
Functional neural circuits in the mature animals are shaped during postnatal development by elimination of unnecessary synapses and strengthening of necessary ones among redundant synaptic connections formed transiently around birth. In the cerebellum of neonatal rodents, excitatory synapses are formed on the somata of Purkinje cells (PCs) by climbing fibers (CFs) that originate from neurons in the contralateral inferior olive. Each PC receives inputs from multiple (~ five) CFs that have about equal synaptic strengths. Subsequently, a single CF selectively becomes stronger relative to the other CFs during the first postnatal week. Then, from around postnatal day 9 (P9), only the strongest CF (“winner” CF) extends its synaptic territory along PC dendrites. In contrast, synapses of the weaker CFs (“loser” CFs) remain on the soma and the most proximal portion of the dendrite together with somatic synapses of the “winner” CF. These perisomatic CF synapses are eliminated progressively during the second and the third postnatal weeks. From P6 to P11, the elimination proceeds independently of the formation of the synapses on PC dendrites by parallel fibers (PFs). From P12 and thereafter, the elimination requires normal PF-PC synapse formation and is presumably dependent on the PF synaptic inputs. Most PCs become mono-innervated by single strong CFs on their dendrites in the third postnatal week. In this review article, we will describe how adult-type CF mono-innervation of PC is established through these multiple phases of postnatal cerebellar development and make an overview of molecular/cellular mechanisms underlying them.
Journal Article
Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration
2014
Recordings from monkeys during motor learning suggest that durations of complex-spike (CS) responses to climbing-fibre inputs are meaningful signals correlated across the Purkinje-cell population during motor learning; longer climbing-fibre bursts lead to longer-duration CS responses, larger synaptic depression and stronger learning, thus forming a graded instruction.
Purkinje-cell spike in learning
Neuronal plasticity in the cerebellum is central to behavioural learning. It is known that motor error signals from the climbing fibres drive cerebellar learning by modulating long-term depression of synapses from parallel fibres to Purkinje cells. Yan Yang and Stephen Lisberger studied the plasticity caused by a single complex spike in a single Purkinje cell in a monkey participating in a motor learning task and find that the magnitude of the plasticity as well as the motor learning depends on the duration of the complex spike in this climbing-fibre input. This graded instruction differs from the 'all-or-none' view previously thought to describe this input.
Behavioural learning is mediated by cellular plasticity, such as changes in the strength of synapses at specific sites in neural circuits. The theory of cerebellar motor learning
1
,
2
,
3
relies on movement errors signalled by climbing-fibre inputs to cause long-term depression of synapses from parallel fibres to Purkinje cells
4
,
5
. However, a recent review
6
has called into question the widely held view that the climbing-fibre input is an ‘all-or-none’ event. In anaesthetized animals, there is wide variation in the duration of the complex spike (CS) caused in Purkinje cells by a climbing-fibre input
7
. Furthermore, the amount of plasticity in Purkinje cells is graded according to the duration of electrically controlled bursts in climbing fibres
8
,
9
. The duration of bursts depends on the ‘state’ of the inferior olive and therefore may be correlated across climbing fibres
8
,
10
. Here we provide a potential functional context for these mechanisms during motor learning in behaving monkeys. The magnitudes of both plasticity and motor learning depend on the duration of the CS responses. Furthermore, the duration of CS responses seems to be a meaningful signal that is correlated across the Purkinje-cell population during motor learning. We suggest that during learning, longer bursts in climbing fibres lead to longer-duration CS responses in Purkinje cells, more calcium entry into Purkinje cells, larger synaptic depression, and stronger learning. The same graded impact of instructive signals for plasticity and learning might occur throughout the nervous system.
Journal Article
Acquisition phase-specific contribution of climbing fiber transmission to cerebellum-dependent motor memory in mice
2025
Climbing fiber (CF) transmission from the inferior olive (IO) triggers complex spikes (Cs) in Purkinje cells (PCs) driven by a burst of calcium spikes. In the context of motor learning, especially the compensatory optic response, CF transmission serves as an instructive signal selectively conveyed to PCs. While the significance of CF input in motor memory formation is widely acknowledged, a comprehensive understanding of its distinct contribution across different temporal windows, spanning from the initial learning phase to the retrieval period, remains incomplete. Therefore, we aimed to investigate the necessity of CF-induced instructive signals in motor learning by assessing their roles in memory acquisition, consolidation, and retrieval. We employed optogenetics to selectively inhibit CF transmission during targeted time windows. Consequently, the absence of CF-induced instructive signals during motor learning impairs memory acquisition. However, when these signals were suppressed during the consolidation and retrieval period, there was neither a loss of long-term memory nor a prevention of memory retrieval. Our results highlight that CF transmission plays a specialized and critical role primarily in memory acquisition, rather than in subsequent processes.
Journal Article
Principal cells of the brainstem’s interaural sound level detector are temporal differentiators rather than integrators
by
Franken, Tom P
,
Joris, Philip X
,
Smith, Philip H
in
Acoustic Stimulation - methods
,
Action Potentials - physiology
,
Analysis
2018
The brainstem’s lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating ‘chopper’ responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit.
Journal Article
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper
by
Lang, Eric J.
,
Schweighofer, Nicolas
,
Bengtsson, Fredrik
in
Animals
,
Basic Medicine
,
Biomedical and Life Sciences
2017
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system’s primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Journal Article
Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues
by
Simon Foster
,
Roberta Donato
,
Jimena A. Ballestero
in
Acoustic Stimulation
,
Animals
,
Auditory Pathways - cytology
2014
Neurons in the medial superior olive (MSO) and lateral superior olive (LSO) of the auditory brainstem code for sound-source location in the horizontal plane, extracting interaural time differences (ITDs) from the stimulus fine structure and interaural level differences (ILDs) from the stimulus envelope. Here, we demonstrate a postsynaptic gradient in temporal processing properties across the presumed tonotopic axis; neurons in the MSO and the low-frequency limb of the LSO exhibit fast intrinsic electrical resonances and low input impedances, consistent with their processing of ITDs in the temporal fine structure. Neurons in the high-frequency limb of the LSO show low-pass electrical properties, indicating they are better suited to extracting information from the slower, modulated envelopes of sounds. Using a modeling approach, we assess ITD and ILD sensitivity of the neural filters to natural sounds, demonstrating that the transformation in temporal processing along the tonotopic axis contributes to efficient extraction of auditory spatial cues.
Journal Article
Integrate-and-fire-type models of the lateral superior olive
by
Ashida, Go
,
Wang, Tiezhi
,
Kretzberg, Jutta
in
Action Potentials - physiology
,
Analysis
,
Animals
2024
Neurons of the lateral superior olive (LSO) in the auditory brainstem play a fundamental role in binaural sound localization. Previous theoretical studies developed various types of neuronal models to study the physiological functions of the LSO. These models were usually tuned to a small set of physiological data with specific aims in mind. Therefore, it is unclear whether and how they can be related to each other, how widely applicable they are, and which model is suitable for what purposes. In this study, we address these questions for six different single-compartment integrate-and-fire (IF) type LSO models. The models are divided into two groups depending on their subthreshold responses: passive (linear) models with only the leak conductance and active (nonlinear) models with an additional low-voltage-activated potassium conductance that is prevalent among the auditory system. Each of these two groups is further subdivided into three subtypes according to the spike generation mechanism: one with simple threshold-crossing detection and voltage reset, one with threshold-crossing detection plus a current to mimic spike shapes, and one with a depolarizing exponential current for spiking. In our simulations, all six models were driven by identical synaptic inputs and calibrated with common criteria for binaural tuning. The resulting spike rates of the passive models were higher for intensive inputs and lower for temporally structured inputs than those of the active models, confirming the active function of the potassium current. Within each passive or active group, the simulated responses resembled each other, regardless of the spike generation types. These results, in combination with the analysis of computational costs, indicate that an active IF model is more suitable than a passive model for accurately reproducing temporal coding of LSO. The simulation of realistic spike shapes with an extended spiking mechanism added relatively small computational costs.
Journal Article
Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system
by
Sitko, Austen A
,
Suthakar, Kirupa
,
Weisz, Catherine JC
in
Animals
,
auditory
,
Cochlea - physiology
2023
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days. Just as our pupils dilate or shrink depending on the amount of light available to our eyes, our ears adjust their sensitivity based on the sound environment we encounter. Evidence suggests that a group of cells known as olivocochlear neurons (OCNs for short) may be involved in this process. These cells are located in the brainstem but project into the cochlea, the inner ear structure that converts sound waves into the electrical impulses relayed to the brain. OCNs may mediate how sounds are detected and encoded \"at the source.\" Historically, OCNs have been divided into two groups (medial or lateral OCNs) based on different morphologies and roles in hearing. For instance, medial OCNs are thought to protect our ears against loud sounds by sending molecular signals to the inner ear cells that amplify certain auditory signals. However, it remains difficult to disentangle the precise function of the different types of OCNs, in part because scientists still lack markers that would allow them to distinguish between medial and lateral cells simply based on genetic activity. Frank et al. aimed to eliminate this bottleneck by identifying which genes were switched on and to what degree in individual mouse medial and lateral OCNs; this was done throughout development and after exposure to loud noises. The experiments uncovered a range of genetic markers for medial and lateral OCNs, showing that these cells switch on different sets of genes relevant to their role over development. This gene expression data also revealed that two distinct groups of lateral OCNs exist, one of which is characterised by the production of large amounts of neuropeptides, a type of chemical messenger that can modulate neural circuit activity. Further work in both developing and adult mice showed that this production is shaped by the activity of the cells, with the neuropeptide levels increasing when the animals are exposed to damaging levels of noise. This change lasts for several days, suggesting that such an experience can have long-lasting effects on how the brain provides feedback to the ear. Overall, the results by Frank et al. will help to better identify and characterize the different types of OCNs and the role that they have in hearing. By uncovering the chemical messengers that mediate the response to loud noises, this research may contribute to a better understanding of how to prevent or reduce hearing loss.
Journal Article
Efferent feedback controls bilateral auditory spontaneous activity
by
Santos-Sacchi, Joseph
,
Navaratnam, Dhasakumar
,
Gribizis, Alexandra
in
59/5
,
631/378/2571
,
631/378/2619
2021
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Spontaneous activity generated in the cochleae propagates into the central auditory system to promote circuit formation before hearing onset. Here, the authors reveal the important role of cholinergic efferent modulation in coordinating bilateral spontaneous activity and the emergence of functional responses.
Journal Article