Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Oncolytic Virotherapy - trends"
Sort by:
Oncolytic viruses for cancer immunotherapy
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Oncolytic Virotherapy: A Contest between Apples and Oranges
Viruses can be engineered or adapted for selective propagation in neoplastic tissues and further modified for therapeutic transgene expression to enhance their antitumor potency and druggability. Oncolytic viruses (OVs) can be administered locally or intravenously and spread to a variable degree at sites of tumor growth. OV-infected tumor cells die in situ, releasing viral and tumor antigens that are phagocytosed by macrophages, transported to regional lymph nodes, and presented to antigen-reactive T cells, which proliferate before dispersing to kill uninfected tumor cells at distant sites. Several OVs are showing clinical promise, and one of them, talimogene laherparepvec (T-VEC), was recently granted marketing approval for intratumoral therapy of nonresectable metastatic melanoma. T-VEC also appears to substantially enhance clinical responsiveness to checkpoint inhibitor antibody therapy. Here, we examine the T-VEC paradigm and review some of the approaches currently being pursued to develop the next generation of OVs for both local and systemic administration, as well as for use in combination with other immunomodulatory agents. Russell and Peng review the field of oncolytic virotherapy, highlighting the recent approval of intralesional talimogene laherparepvec (T-VEC) for metastatic melanoma and its synergistic interaction with checkpoint inhibitor antibodies. They then explore how newer OVs may further improve treatment outcomes in the post-T-VEC era.
Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Oncolytic viruses as anticancer agents: clinical progress and remaining challenges
Immunotherapy has transformed the treatment of cancer, yet many patients do not have response or lasting benefit. Strategies to overcome resistance remain of crucial importance. Oncolytic viruses offer a promising approach, with the unique ability to selectively replicate within (and to destroy) cancer cells, remodel the immunosuppressive tumour microenvironment, and stimulate antitumour immunity. Interest in the potential of oncolytic viruses has grown steadily over the past two decades, fuelled by advances in cancer immunology and viral engineering. However, clinical translation has not kept pace, and although a plethora of promising new constructs have entered clinical testing, several barriers continue to restrict widespread clinical implementation. This Therapeutics paper highlights key milestones in oncolytic virus clinical development, discusses the challenges that remain, and, through clinical reflection, considers how future research might be streamlined to achieve meaningful benefit for patients.
Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment
Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.
Evidence for Oncolytic Virotherapy: Where Have We Got to and Where Are We Going?
The last few years have seen an increased interest in immunotherapy in the treatment of malignant disease. In particular, there has been significant enthusiasm for oncolytic virotherapy, with a large amount of pre-clinical data showing promise in animal models in a wide range of tumour types. How do we move forward into the clinical setting and translate something which has such potential into meaningful clinical outcomes? Here, we review how the field of oncolytic virotherapy has developed thus far and what the future may hold.
To Infection and Beyond: The Multi-Pronged Anti-Cancer Mechanisms of Oncolytic Viruses
Over the past 1–2 decades we have witnessed a resurgence of efforts to therapeutically exploit the attributes of lytic viruses to infect and kill tumor cells while sparing normal cells. We now appreciate that the utility of viruses for treating cancer extends far beyond lytic cell death. Viruses are also capable of eliciting humoral and cellular innate and adaptive immune responses that may be directed not only at virus-infected cells but also at uninfected cancer cells. Here we review our current understanding of this bystander effect, and divide the mechanisms into lytic, cytokine, innate cellular, and adaptive phases. Knowing the key pathways and molecular players during virus infection in the context of the cancer microenvironment will be critical to devise strategies to maximize the therapeutic effects of oncolytic viroimmunotherapy.
How to develop viruses into anticancer weapons
About the Authors: Roberto Cattaneo * E-mail: Cattaneo.Roberto@mayo.edu Affiliation: Department of Molecular Medicine and Virology and Gene Therapy Graduate School track, Mayo Clinic, Rochester, Minnesota, United States of America Stephen J. Russell Affiliation: Department of Molecular Medicine and Virology and Gene Therapy Graduate School track, Mayo Clinic, Rochester, Minnesota, United States of AmericaCitation: Cattaneo R, Russell SJ (2017) How to develop viruses into anticancer weapons. Competing interests: SJR is a scientific cofounder, equity stakeholder, board member and serves as CEO at Vyriad, a company that is developing oncolytic measles viruses for cancer therapy. In the mid-20th century, the principle of virus attenuation through adaptation to unnatural hosts was extended to cultured cells: cells from different species were used to select viruses with multiple mutations, reducing replication speed and allowing the immune system to control viral infection. [...]subunit vaccines are proving to be effective against virus-induced cancers, preventing hepatitis B virus-induced hepatocellular carcinoma and human papilloma virus-induced cervical cancer [2, 4]. Intentional transmission of virus infections was then pursued in a range of cancer types using several different virus isolates (most notably West Nile, mumps, and adenovirus) and led to definite tumor regressions but sometimes also to fatal encephalitis, as with West Nile virus in immunosuppressed lymphoma patients [8]. [...]the vaccine lineage-based measles virus (MeV) platform we have developed can enter many cell types through the ubiquitously expressed protein CD46, while future clinical trials may be based on viruses with targeted tropism. [...]targeted cell entry and cell-cell fusion: the two-protein MeV...
Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference
The 11th International Oncolytic Virus Conference (IOVC) was held from April 9–12, 2018 in Oxford, UK. This is part of the high-profile academic-led series of meetings that was started back in 2002 by Steve Russell and John Bell, with most of the previous meetings being held in North America (often in Banff). The conference brought together many of the major players in oncolytic virotherapy from all over the world, addressing all stages of research and development—from aspects of basic science and cellular immunology all the way through to early- and late-phase clinical trials. The meeting welcomed 352 delegates from 24 countries. The top seven delegate countries, namely, the UK, US, Canada, The Netherlands, Germany, Japan and South Korea, contributed 291 delegates while smaller numbers coming from Australia, Austria, Bulgaria, China, Finland, France, Iraq, Ireland, Israel, Italy, Latvia, Malaysia, Poland, Slovenia, Spain, Sweden and Switzerland. Academics comprised about half of the attendees, industry 30% and students 20%. The next IOVC is scheduled to be held on Vancouver Island in autumn 2019. Here we share brief summaries of the oral presentations from invited speakers and proffered papers in the different subtopics presented at IOVC 2018.
Oncolytic viruses & their specific targeting to tumour cells
Cancer is one of the major causes of death worldwide. In spite of achieving significant successes in medical sciences in the past few decades, the number of deaths due to cancer remains unchecked. The conventional chemotherapy and radiotherapy have limited therapeutic index and a plethora of treatment related side effects. This situation has provided an impetus for search of novel therapeutic strategies that can selectively destroy the tumour cells, leaving the normal cells unharmed. Viral oncotherapy is such a promising treatment modality that offers unique opportunity for tumour targeting. Numerous viruses with inherent anti-cancer activity have been identified and are in different phases of clinical trials. In the era of modern biotechnology and with better understanding of cancer biology and virology, it has become feasible to engineer the oncolytic viruses (OVs) to increase their tumour selectivity and enhance their oncolytic activity. In this review, the mechanisms by which oncolytic viruses kill the tumour cells have been discussed as also the development made in virotherapy for cancer treatment with emphasis on their tumour specific targeting.