Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
105 result(s) for "Ophiopogon"
Sort by:
Names and Species of Ophiopogon Cultivated in the Southeastern United States
Species of Ophiopogon Ker-Gawl (aztec grass, monkey grass, mondo grass, and snake's beard) are versatile, evergreen, grass-like perennials used in a variety of landscape situations. The nursery/landscape industry commonly recognizes the Ophiopogon species O. japonicus (Linn. f.) Ker-Gawl and O. plansicapus Nakai, with O. clarkei Hook. f., O. intermedius D. Don, O. graminifolius (L.) Wehrh., O. jaburan (Sieb.) Lodd., O. kansuensis Bat., and O. ohwii Okuyama available, but often misidentified and marketed under other names. Additional taxa are being introduced through botanic gardens and plant expeditions by horticulturists. A taxonomic treatment by the author of liriopogons cultivated in the southeastern United States had been in progress for nearly 15 years. Plants bearing the name O. graminifolius included additional misidentified species of Liriope Lour. and Ophiopogon. Plants bearing the name O. chingii Wang and Chang did not bear inflorescences, but vegetatively appear to be equivalent to O. graminifolius. Plants bearing the name O. mairei H. Lév. and O. wallichianus (Kunth) J.D. Hook. were misidentified as Liriope exiliflora (L.H. Bailey) H.H. Hume. Additional taxa available in botanic gardens included O. bockianus Diels., O. bodnieri H. Lév., O. checkiangensis Koiti Kimura and Migo, O. chingii, and O. marmoratus Pierre ex L. Rodr. Plants bearing the name O. parviflorus (Hook. f.) Hara died without producing reproductive structures; thus, identification to even genus was unattainable. Ophiopogon arabicus Hort., O. nigra Hort., and O. nigrescens Hort. were invalid names used in the trade for O. planiscapus. This treatment includes original morphological descriptions from data obtained in the study, observational notes, and a table with a key to segregation of taxa.
Ophiopogonin D: review of pharmacological activity
Ophiopogon D is an important natural organic compound in , which often has significant biological activity. The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of OP-D in recent years. PubMed and Web of Science were searched with the keywords:\" \", \"Ophiopogon D\" \"pharmacology\", and \"pharmacokinetics\". There was no restriction on the publication year, and the last search was conducted on 1 Jan 2024. Emerging evidence suggests that OP-D possess numerous pharmacological activities, including bone protection, cardiovascular protection, immune regulation, anti-cancer, anti-atherosclerosis, anti-inflammatory and anti-NAFLD. OP-D has a potential value in the prevention and treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of OP-D.
Integrative metabolomics and transcriptomics profiling reveals differential expression of flavonoid synthesis in Ophiopogon japonicus (L. f.) Ker-Gawl. in adaptation to drought
Drought is one of the consequences of climate change that severely affects plant growth and development. Ophiopogon japonicus (L. f.) Ker-Gawl. (Chinese name: Chuanmaidong, abbreviated as CMD) is a commonly used herbaceous plant whose growth and development are strongly affected by drought. Here, we comprehensively analyzed the transcriptomic and metabolic responses of two CMD varieties (EP and CP) to drought stress. CP utilized a small number of differentially expressed genes to regulate a greater number of differential metabolites compared to EP, suggesting that it may be more drought tolerant. In addition, integrated transcriptome and metabolome analyses revealed that transcription factors such as WRKY, TIFY, and C2H2 regulate flavonoid synthesis in CMD. These findings provide ideas for in-depth analysis of the mechanism of CMD against drought stress, and provide a theoretical basis for breeding high-quality drought-tolerant varieties.
Residue of Paclobutrazol and Its Regulatory Effects on the Secondary Metabolites of Ophiopogon japonicas
Currently, paclobutrazol is excessively used in the planting process of Ophiopogon japonicus (O. japonicus) due to its important role in regulating the growth of tuber roots, ultimately increasing the yield and shortening the growth cycle of Ophiopogonis Radix. For insight into this process and the potential risks of paclobutrazol and its mediated consequences on the secondary metabolites in Ophiopogonis Radix, corresponding high performance liquid chromatography-tandem mass spectrometric methods (HPLC-MS/MS) were developed in this study and then applied to Ophiopogonis Radix, soil, and water samples. The results demonstrated the detection of different levels of paclobutrazol residue were in Ophiopogonis Radix, soil, and water samples. In addition, the quantitative results of the secondary metabolites showed that paclobutrazol significantly decreased four steroidal saponins in Ophiopogonis Radix, especially ophiopogonin D, where the content was decreased from 824.87 to 172.50 mg/kg. Concurrently, ophiopogonanone C, a flavonoid in Ophiopogonis Radix, also significantly decreased from 2.66 to 1.33 mg/kg. In conclusion, the residual paclobutrazol and its negative regulation on the secondary metabolism of Ophiopogonis Radix brings potential hazards to the environment and human health. These results provide more comprehensive data that can be used for the reassessment of the use of paclobutrazol in O. japonicus and the formulation of related standards.
Phylogeography of cultivated and wild ophiopogon japonicus based on chloroplast DNA: exploration of the origin and sustainable cultivation
Background Ophiopogon japonicus , mainly planted in Sichuan (CMD) and Zhejiang (ZMD) province in China, has a lengthy cultivation history. During the long period of domestication, the genetic diversity of cultivated O. japonicus has substantially declined, which will affect the population continuity and evolutionary potential of this species. Therefore, it is necessary to clarify the phylogeography of cultivated O. japonicus to establish a theoretical basis for the utilization and conservation of the genetic resources of O. japonicus . Result The genetic diversity and population structure of 266 O. japonicus individual plants from 23 sampling sites were analyzed based on 4 chloroplast DNA sequences ( atpB-rbcL , rpl16 , psbA-trnH and rpl20-5’rps12 ) to identify the effects of domestication on genetic diversity of cultivars and determine their geographic origins. The results showed that cultivated O. japonicus and wild O. japonicus had 4 and 15 haplotypes respectively. The genetic diversity of two cultivars ( H d = 0.35700, π  = 0.06667) was much lower than that of the wild populations ( H d = 0.76200, π  = 0.20378), and the level of genetic diversity in CMD ( H d = 0.01900, π  = 0.00125) was lower than that in ZMD ( H d = 0.06900, π  = 0.01096). There was significant difference in genetic differentiation between the cultivated and the wild ( F ST = 0.82044), especially between the two cultivars ( F ST = 0.98254). This species showed a pronounced phylogeographical structure ( N ST > G ST , P  < 0.05). The phylogenetic tree showed that the genetic difference between CMD and ZMD was not enough to distinguish the cultivars between the two producing areas by using O. amblyphyllus Wang et Dai as an outgroup. In addition, both CMD and ZMD have a closer relationship with wild populations in Sichuan than that in Zhejiang. The results of the TCS network and species distribution model suggested that the wild population TQ located in Sichuan province could serve as the ancestor of cultivated O. japonicus , which was supported by RASP analysis. Conclusion These results suggest that cultivated O. japonicus has experienced dramatic loss of genetic diversity under anthropogenic influence. The genetic differentiation between CMD and ZMD is likely to be influenced by founder effect and strong artificial selection for plant traits. It appears that wild populations in Sichuan area are involved in the origin of not only CMD but also ZMD. In addition, we also raise some suggestions for planning scientific strategies for resource conservation of O. japonicus based on its genetic diversity and population structure.
The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’
Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogonplaniscapus 'Nigrescens'. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.
Ophiopogon Polysaccharide Promotes the In Vitro Metabolism of Ophiopogonins by Human Gut Microbiota
Gut microbiota play an important role in metabolism of intake saponins, and parallelly, the polysaccharides deriving from herbal products possess effects on gut microbiota. Ophiopogonis Radix is a common Chinese herb that is popularly used as functional food in China. Polysaccharide and steroidal saponin, e.g., ophiopogonin, mainly ophiopogonin D (Oph-D) and ophiopogonin D’ (Oph-D’), are the major constituents in this herb. In order to reveal the role of gut microbiota in metabolizing ophiopogonin, an in vitro metabolism of Oph-D and Oph-D’ by human gut microbiota, in combination with or without Ophiopogon polysaccharide, was conducted. A sensitive and reliable UPLC-MS/MS method was developed to simultaneously quantify Oph-D, Oph-D’ and their final metabolites, i.e., ruscogenin and diosgenin in the broth of microbiota. An elimination of Oph-D and Oph-D’ was revealed in a time-dependent manner, as well as the recognition of a parallel increase of ruscogenin and diosgenin. Ophiopogon polysaccharide was shown to stimulate the gut microbiota-induced metabolism of ophiopogonins. This promoting effect was further verified by increased activities of β-D-glucosidase, β-D-xylosidase, α-L-rhamnosidase and β-D-fucosidase in the broth. This study can be extended to investigate the metabolism of steroidal saponins by gut microbiota when combined with other herbal products, especially those herbs enriched with polysaccharides.
Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway
Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, has been shown to inhibit cerebral ischemic injury. However, its potential molecular action on blood-brain barrier (BBB) dysfunction after stroke remains unclear. This study aimed to investigate the effects of ruscogenin on BBB dysfunction and the underlying mechanisms in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen–glucose deprivation/reoxygenation (OGD/R)-injured mouse brain microvascular endothelial cells (bEnd.3). The results demonstrated that administration of ruscogenin (10 mg/kg) decreased the brain infarction and edema, improved neurological deficits, increased cerebral brain flow (CBF), ameliorated histopathological damage, reduced evans blue (EB) leakage and upregulated the expression of tight junctions (TJs) in MCAO/R-injured mice. Meanwhile, ruscogenin (0.1–10 µM) treatment increased cell viability and trans-endothelial electrical resistance (TEER) value, decreased sodium fluorescein leakage, and modulated the TJs expression in OGD/R-induced bEnd.3 cells. Moreover, ruscogenin also inhibited the expression of interleukin-1β (IL-1β) and caspase-1, and markedly suppressed the expression of Nucleotide-binding domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) and thiredoxin-interactive protein (TXNIP) in vivo and in vitro. Furthermore, ruscogenin decreased reactive oxygen species (ROS) generation and inhibited the mitogen-activated protein kinase (MAPK) pathway in OGD/R-induced bEnd.3 cells. Our findings provide some new insights into its potential application for the prevention and treatment of ischemic stroke.
Protected Geographical Indication Discrimination of Zhejiang and Non-Zhejiang Ophiopogonis japonicus by Near-Infrared (NIR) Spectroscopy Combined with Chemometrics: The Influence of Different Stoichiometric and Spectrogram Pretreatment Methods
This paper presents a method for the protected geographical indication discrimination of Ophiopogon japonicus from Zhejiang and elsewhere using near-infrared (NIR) spectroscopy combined with chemometrics. A total of 3657 Ophiopogon japonicus samples from five major production areas in China were analyzed by NIR spectroscopy, and divided into 2127 from Zhejiang and 1530 from other areas (‘non-Zhejiang’). Principal component analysis (PCA) was selected to screen outliers and eliminate them. Monte Carlo cross validation (MCCV) was introduced to divide the training set and test set according to a ratio of 3:7. The raw spectra were preprocessed by nine single and partial combination methods such as the standard normal variable (SNV) and derivative, and then modeled by partial least squares regression (PLSR), a support vector machine (SVM), and soft independent modeling of class analogies (SIMCA). The effects of different pretreatment and chemometrics methods on the model are discussed. The results showed that the three pattern recognition methods were effective in geographical origin tracing, and selecting the appropriate preprocessing method could improve the traceability accuracy. The accuracy of PLSR after the standard normal variable was better, with R2 reaching 0.9979, while that of the second derivative was the lowest with an R2 of 0.9656. After the SNV pretreatment, the accuracy of the training set and test set of SVM reached the highest values, which were 99.73% and 98.40%, respectively. The accuracy of SIMCA pretreated with SNV and MSC was the highest for the origin traceability of Ophiopogon japonicus, which could reach 100%. The distance between the two classification models of SIMCA-SNV and SIMCA-MSC is greater than 3, indicating that the SIMCA model has good performance.
Ophiopogon japonicus polysaccharide reduces doxorubicin-induced myocardial ferroptosis injury by activating Nrf2/GPX4 signaling and alleviating iron accumulation
Doxorubicin (DOX) is a principal chemotherapeutic agent in the domain of oncological intervention. However, its clinical application is constrained due to its severe and irreversible side effects, particularly heart damage. Ferroptosis, characterized by iron accumulation and redox system imbalance, serves a key role in DOX-induced cardiotoxicity. Ophiopogon japonicus polysaccharide (OJP) exhibits diverse pharmacological activities, including cardiovascular protection, and anti-inflammatory, anti-oxidative and immune regulatory effects. However, the role and mechanism of OJP in DOX-mediated ferroptosis-triggered injury in cardiomyocytes remain elusive. The present study aimed to assess the effect of OJP on DOX-induced myocardial ferroptosis injury and to reveal its underlying anti-ferroptosis mechanism. The detection of myocardial injury markers, such as LDH, indicated that OJP can ameliorate myocardial damage. Additionally, western blot analyses reveal that OJP decreases the expression levels of the ferroptosis-related marker transferrin receptor 1 (TFR1) while simultaneously increasing expression levels of glutathione peroxidase 4 (GPX4) in a concentration-dependent manner. Furthermore, fluorescence probe assays demonstrate that OJP not only reduces iron accumulation and oxidative stress but also inhibits the production of lipid peroxidation, as evidenced by a decrease in malondialdehyde (MDA) levels measured. In addition, OJP simultaneously decreased ferroptosis by enhancing mitochondrial function. Mechanistically, OJP attenuated ferroptosis by upregulating the endogenous key antioxidant factor nuclear factor erythroid 2-related factor 2 (Nrf2), which in turn increased the expression of the downstream signaling molecule GPX4 and reduced the accumulation of the labile iron pool. Therefore, OJP may be a novel therapeutic intervention for DOX-induced ferroptosis-triggered myocardial injury.