Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,037 result(s) for "Optical Phenomena"
Sort by:
The optics of life
Optics--a field of physics focusing on the study of light--is also central to many areas of biology, including vision, ecology, botany, animal behavior, neurobiology, and molecular biology. The Optics of Life introduces the fundamentals of optics to biologists and nonphysicists, giving them the tools they need to successfully incorporate optical measurements and principles into their research. Sönke Johnsen starts with the basics, describing the properties of light and the units and geometry of measurement. He then explores how light is created and propagates and how it interacts with matter, covering topics such as absorption, scattering, fluorescence, and polarization. Johnsen also provides a tutorial on how to measure light as well as an informative discussion of quantum mechanics.
A Technique for Determining Three-Dimensional Storm Cloud-Top Locations Using Stereo Optical Lightning Pulses Observed from Orbit
We have developed a technique to estimate the three-dimensional (3D) location of lightning optical pulses based on the stereo view of common lightning pulses from two different orbital instruments. The technique only requires the satellite position and the look vector to the lightning optical source. An example dataset of the Geostationary Lightning Mappers (GLMs) on GOES-16 and GOES-17 from 10 June 2019 is used to illustrate the technique. For this dataset, we find that the values for the stereo determination of cloud-top altitudes are on average lower by 740 m than the ones calculated from the lightning ellipsoid that is currently applied during geolocation. When we compare the locations to the Advanced Baseline Imager (ABI) Cloud Height Algorithm (ACHA), we find that our technique also produces slightly lower altitude values by 240 m. There is greater spread in our technique than either the lightning ellipsoid or the ABI cloud-top height that is likely due to the incorrect pairing of groups between the two GLMs and the 8–14-km resolution in the group locations. Based on GLM location errors derived from comparisons to ground truth sources, the uncertainty in the radial location determined by the stereo location technique is 5.2 km, while the altitude uncertainty is 4.0 km. The technique can be used to 3D map lightning or other optical sources such as bolides and other upper-atmospheric optical phenomena from any two orbital sensors with overlapping fields of view.
Casimir–Polder interaction of neutrons with metal or dielectric surfaces
We predict a repulsive Casimir–Polder-type dispersion interaction between a single neutron and a metal or dielectric surface. We consider a scenario where a single neutron is subject to an external magnetic field. Due to its intrinsic magnetic moment, the neutron then forms a magnetisable two-level system which can exchange virtual photons with a nearby surface. The resulting dispersion interaction between a purely magnetic object (neutron) and a purely electric one (surface) is found to be repulsive, in contrast to the typical attractive interaction between electric objects. Its magnitude is considerably smaller than the standard atom–surface Casimir–Polder force due to the magnetic nature of the interaction and the smallness of the electron-to-neutron mass ratio. Nevertheless, we show that it can be comparable to the gravitational potential of the same surface and should be taken into consideration in future neutron interference experiments.
Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography
Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly placed on any part of the body. The purpose of this review is to provide a neuroscience audience with the theoretical background needed to understand the physical basis for the signal observed by OPMs. Those already familiar with the physics of MRI and NMR should note that OPMs share much of the same theory as the operation of OPMs rely on magnetic resonance. This review establishes the physical basis for the signal equation for OPMs. We re-derive the equations defining the bounds on OPM performance and highlight the important trade-offs between quantities such as bandwidth, sensor size and sensitivity. These equations lead to a direct upper bound on the gain change due to cross-talk for a multi-channel OPM system. •We review the theoretical basis of OPMs.•We re-derive the signal equations for OPMs.•We highlight the important trade-offs in sensor design.•We discuss the practical implementation of this technology.
An All-Silicon Passive Optical Diode
A passive optical diode effect would be useful for on-chip optical information processing but has been difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.
Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons
Miniaturized lasers are an emerging platform for generating coherent light for quantum photonics, in vivo cellular imaging, solid-state lighting and fast three-dimensional sensing in smartphones1–3. Continuous-wave lasing at room temperature is critical for integration with opto-electronic devices and optimal modulation of optical interactions4,5. Plasmonic nanocavities integrated with gain can generate coherent light at subwavelength scales6–9, beyond the diffraction limit that constrains mode volumes in dielectric cavities such as semiconducting nanowires10,11. However, insufficient gain with respect to losses and thermal instabilities in nanocavities has limited all nanoscale lasers to pulsed pump sources and/or low-temperature operation6–9,12–15. Here, we show continuous-wave upconverting lasing at room temperature with record-low thresholds and high photostability from subwavelength plasmons. We achieve selective, single-mode lasing from Yb3+/Er3+-co-doped upconverting nanoparticles conformally coated on Ag nanopillar arrays that support a single, sharp lattice plasmon cavity mode and greater than wavelength λ/20 field confinement in the vertical dimension. The intense electromagnetic near-fields localized in the vicinity of the nanopillars result in a threshold of 70 W cm−2, orders of magnitude lower than other small lasers. Our plasmon-nanoarray upconverting lasers provide directional, ultra-stable output at visible frequencies under near-infrared pumping, even after six hours of constant operation, which offers prospects in previously unrealizable applications of coherent nanoscale light.
Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking
Metasurface-based optical elements typically manipulate light waves by imparting space-variant changes in the amplitude and phase with a dense array of scattering nanostructures. The highly localized and low optical-quality-factor ( Q ) modes of nanostructures are beneficial for wavefront shaping as they afford quasi-local control over the electromagnetic fields. However, many emerging imaging, sensing, communication, display and nonlinear optics applications instead require flat, high- Q optical elements that provide substantial energy storage and a much higher degree of spectral control over the wavefront. Here, we demonstrate high- Q , non-local metasurfaces with atomically thin metasurface elements that offer notably enhanced light–matter interaction and fully decoupled optical functions at different wavelengths. We illustrate a possible use of such a flat optic in eye tracking for eyewear. Here, a metasurface patterned on a regular pair of eye glasses provides an unperturbed view of the world across the visible spectrum and redirects near-infrared light to a camera to allow imaging of the eye. High optical-quality-factor, non-local metasurfaces enable independent functions across different wavelength bands.
Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions
The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light. Here, the authors introduce a live-cell imaging system using chiroptical contrast, enabling the study of chiral interactions. They demonstrate simultaneous imaging of enantiomeric pairs of molecular probes emitting circularly polarised light, using both single and two-photon excitation.
Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe–CdS core–shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination. The use of colloidal quantum dots in optical applications is hampered by difficulties in optimizing their physical properties. The synthesis of high-quality quantum dots that simultaneously exhibit narrow emission linewidths and minimal blinking potentially overcomes this problem.
Imaging biological tissue with high-throughput single-pixel compressive holography
Single-pixel holography (SPH) is capable of generating holographic images with rich spatial information by employing only a single-pixel detector. Thanks to the relatively low dark-noise production, high sensitivity, large bandwidth, and cheap price of single-pixel detectors in comparison to pixel-array detectors, SPH is becoming an attractive imaging modality at wavelengths where pixel-array detectors are not available or prohibitively expensive. In this work, we develop a high-throughput single-pixel compressive holography with a space-bandwidth- time product (SBP-T) of 41,667 pixels/s, realized by enabling phase stepping naturally in time and abandoning the need for phase-encoded illumination. This holographic system is scalable to provide either a large field of view (~83 mm 2 ) or a high resolution (5.80 μm × 4.31 μm). In particular, high-resolution holographic images of biological tissues are presented, exhibiting rich contrast in both amplitude and phase. This work is an important step towards multi-spectrum imaging using a single-pixel detector in biophotonics. Single-pixel holography generates holographic images with a single-pixel detector making this relatively inexpensive. Here the authors report a high-throughput single-pixel compressive holography method for imaging biological tissue which can either provide a large field of view or high resolution.