Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12,787
result(s) for
"Optical lattices"
Sort by:
Creutz ladder in a resonantly shaken 1D optical lattice
by
Han, Jeong Ho
,
Shin, Y
,
Kang, Jin Hyoun
in
Banded structure
,
Creutz ladder model
,
Energy bands
2020
We report the experimental realization of a Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding structure in the energy bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system.
Journal Article
An ytterbium quantum gas microscope with narrow-line laser cooling
2016
We demonstrate site-resolved imaging of individual bosonic atoms in a Hubbard-regime two-dimensional optical lattice with a short lattice constant of 266 nm. To suppress the heating by probe light with the 1S0-1P1 transition of the wavelength λ = 399 nm for high-resolution imaging and preserve atoms at the same lattice sites during the fluorescence imaging, we simultaneously cool atoms by additionally applying narrow-line optical molasses with the 1S0-3P1 transition of the wavelength λ = 556 nm. We achieve a low temperature of , corresponding to a mean oscillation quantum number along the horizontal axes of 0.22(4) during the imaging process. We detect, on average, 200 fluorescence photons from a single atom within a 400 ms exposure time, and estimate a detection fidelity of 87(2)%. The realization of a quantum gas microscope with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens up the possibilities for studying various kinds of quantum many-body systems such as Bose and Fermi gases, and their mixtures, and also long-range-interacting systems such as Rydberg states.
Journal Article
Quench Dynamics of a Fermi Gas with Strong Nonlocal Interactions
by
Spar, Benjamin M.
,
Belyansky, Ron
,
Guardado-Sanchez, Elmer
in
Charge density waves
,
Cold gas
,
cold gases in optical lattices
2021
We induce strong nonlocal interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approximately described by a
model on a square lattice where the fermions experience isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of nonlocal interactions with tunneling, we investigate the short-time-relaxation dynamics of charge-density waves in the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the door for quantum simulations of systems with strong nonlocal interactions such as extended Fermi-Hubbard models.
Journal Article
Shortcut loading a Bose-Einstein condensate into an optical lattice
by
Zhou, Xiaoji
,
Jin, Shengjie
,
Schmiedmayer, Jörg
in
Bose-Einstein condensates
,
Data processing
,
excited bands
2018
We present an effective and fast (few microseconds) procedure for transferring a Bose-Einstein condensate from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time duration and the interval in each step are fully optimized in order to maximize robustness and fidelity of the final state with respect to the target state. The atoms can be prepared in a single band with even or odd parity, and superposition states of different bands can be prepared and manipulated. Furthermore, we extend this idea to the case of two-dimensional or three-dimensional optical lattices where the energies of excited states are degenerate. We experimentally demonstrate various examples and show very good agreement with the theoretical model. Efficient shortcut methods will find applications in the preparation of quantum systems, in quantum information processing, in precise measurement and as a starting point to investigate dynamics in excited bands.
Journal Article
Comparing a mercury optical lattice clock with microwave and optical frequency standards
2016
In this paper we report the evaluation of an optical lattice clock based on neutral mercury with a relative uncertainty of 1.7 × 10 − 16 . Comparing this characterized frequency standard to a 133Cs atomic fountain we determine the absolute frequency of the 1 S 0 → 3 P 0 transition of 199Hg as Hg = 1128 575 290 808 154.62 Hz 0.19 Hz ( statistical ) 0.38 Hz (systematic), limited solely by the realization of the SI second. Furthermore, by comparing the mercury optical lattice clock to a 87Rb atomic fountain, we determine for the first time to our knowledge the ratio between the 199Hg clock transition and the 87Rb ground state hyperfine transition. Finally we present a direct optical to optical measurement of the 199Hg/87Sr frequency ratio. The obtained value of Hg / Sr = 2.629 314 209 898 909 15 with a fractional uncertainty of 1.8 × 10 − 16 is in excellent agreement with a similar measurement obtained by Yamanaka et al (2015 Phys. Rev. Lett. 114 230801). This makes this frequency ratio one of the few physical quantities agreed upon by different laboratories to this level of uncertainty. Frequency ratio measurements of the kind reported in this paper have a strong impact for frequency metrology and fundamental physics as they can be used to monitor putative variations of fundamental constants.
Journal Article
Single-site-resolved imaging of ultracold atoms in a triangular optical lattice
2020
We demonstrate single-site-resolved fluorescence imaging of ultracold 87Rb atoms in a triangular optical lattice by employing Raman sideband cooling. Combining a Raman transition at the D1 line and a photon scattering through an optical pumping of the D2 line, we obtain images with low background noise. The Bayesian optimisation of 11 experimental parameters for fluorescence imaging with Raman sideband cooling enables us to achieve single-atom detection with a high fidelity of (96.3 ± 1.3)%. Single-atom and single-site resolved detection in a triangular optical lattice paves the way for the direct observation of spin correlations or entanglement in geometrically frustrated systems.
Journal Article
On the formation of antihydrogen beams using travelling optical lattices
2021
The production of beams of antihydrogen atoms using the dipole force provided by a travelling optical lattice to accelerate a sample of the anti-atoms held in a magnetic gradient atom trap is investigated. By considering current and near-future antihydrogen trapping capabilities we find that useful fluxes of the anti-atoms can be achieved with directional properties that can be manipulated using laser parameters such as pulse duration and frequency chirp rate. Applications of the beams are briefly discussed.
Journal Article
Many-body localization of bosons in optical lattices
2018
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose-Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
Journal Article
Fast optical transport of ultracold molecules over long distances
2022
Optically trapped laser-cooled polar molecules hold promise for new science and technology in quantum information and quantum simulation. Large numerical aperture optical access and long trap lifetimes are needed for many studies, but these requirements are challenging to achieve in a magneto-optical trap (MOT) vacuum chamber that is connected to a cryogenic buffer gas beam source, as is the case for all molecule laser cooling experiments so far. Long distance transport of molecules greatly eases fulfilling these requirements as molecules are placed into a region separate from the MOT chamber. We realize a fast transport method for ultracold molecules based on an electronically focus-tunable lens combined with an optical lattice. The high transport speed is achieved by the 1D red-detuned optical lattice, which is generated by interference of a focus-tunable laser beam and a focus-fixed laser beam. Efficiency of 48(8)% is realized in the transport of ultracold calcium monofluoride (CaF) molecules over 46 cm distance in 50 ms, with a moderate heating from 32(2)
μ
K to 53(4)
μ
K. Positional stability of the molecular cloud allows for stable loading of an optical tweezer array with single molecules.
Journal Article
Quantum computational supremacy in the sampling of bosonic random walkers on a one-dimensional lattice
by
Miyake, Akimasa
,
Muraleedharan, Gopikrishnan
,
Deutsch, Ivan H
in
Algorithms
,
Boson sampling
,
Bosons
2019
We study the sampling complexity of a probability distribution associated with an ensemble of identical noninteracting bosons undergoing a quantum random walk on a one-dimensional lattice. With uniform nearest-neighbor hopping we show that one can efficiently sample the distribution for times logarithmic in the size of the system, while for longer times there is no known efficient sampling algorithm. With time-dependent hopping and optimal control, we design the time evolution to approximate an arbitrary Haar-random unitary map analogous to that designed for photons in a linear optical network. This approach highlights a route to generating quantum complexity by optimal control only of a single-body unitary matrix. We study this in the context of two potential experimental realizations: a spinor optical lattice of ultracold atoms and a quantum gas microscope.
Journal Article