Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,362
result(s) for
"Optical measuring instruments"
Sort by:
Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers
by
Huang, Yindong
,
Liang, Jiangang
,
Peng, Wenyu
in
Applied Physical Sciences
,
Biological analysis
,
Biosensors
2022
Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.
Journal Article
Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer
2021
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats’ eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Journal Article
Optical method for studying the magnetic field structure
by
Rud, V Yu
,
Smirnov, K J
,
Davydov, R V
in
Magnetic fields
,
Optical measuring instruments
,
Physics
2019
The article discusses the photometric method for recording the variation of the magnetic field. The features of registration and processing of the signal of dispersion of a magnetic wave from a moving object are established. The basic parameters of an optical sensor for detecting a magnetic wave are determined. The results of experimental studies are presented.
Journal Article
Optical control of coherent magneto-optical resonances in potassium
2024
The influence of Light Induced Atomic Desorption (LIAD) on the potassium D2 line magneto-optical resonances in uncoated buffer-gas optical cell is investigated. LIAD effect reduces the drawbacks of conventional heating for achieving high atomic density that is essential for many spectroscopy-based applications. Another feature of LIAD is the impact on the dwelling time of the atoms when colliding with the surface of the cell. In this work we investigate LIAD from point of view to distinguish the influence of LIAD on the atomic density from the dwelling time as well as to control and improve the parameters of magneto-optical resonances in potassium vapor. The results are interesting for development of new precise optical sensors and devices for various applications.
Journal Article
Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes
by
Daher, Nour
,
Seitz, Jan Roman
,
Bétermier, Fanny
in
639/301/930/12
,
639/624/1107/510
,
639/638/161
2022
The study of chemo-mechanical stress taking place in the electrodes of a battery during cycling is of paramount importance to extend the lifetime of the device. This aspect is particularly relevant for all-solid-state batteries where the stress can be transmitted across the device due to the stiff nature of the solid electrolyte. However, stress monitoring generally relies on sensors located outside of the battery, therefore providing information only at device level and failing to detect local changes. Here, we report a method to investigate the chemo-mechanical stress occurring at both positive and negative electrodes and at the electrode/electrolyte interface during battery operation. To such effect, optical fiber Bragg grating sensors were embedded inside coin and Swagelok cells containing either liquid or solid-state electrolyte. The optical signal was monitored during battery cycling, further translated into stress and correlated with the voltage profile. This work proposes an
operando
technique for stress monitoring with potential use in cell diagnosis and battery design.
Chemo-mechanical stress within Li-based batteries detrimentally affects the performance and lifetime of these devices. Here, the authors propose an operando technique using optical fibers embedded in electrodes for internal stress monitoring of cells containing either solid or liquid electrolytes.
Journal Article
Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor
2022
Large-scale growth of transition metal dichalcogenides and their subsequent integration with compound semiconductors is one of the major obstacles for two-dimensional materials implementation in optoelectronics applications such as active matrix displays or optical sensors. Here we present a novel transition metal dichalcogenide-on-compound-semiconductor fabrication method that is compatible with a batch microfabrication process. We show how a thin film of molybdenum disulfide (MoS2) can be directly synthesized on a gallium-nitride-based epitaxial wafer to form a thin film transistor array. Subsequently, the MoS2 thin film transistor was monolithically integrated with micro-light-emitting-diode (micro-LED) devices to produce an active matrix micro-LED display. In addition, we demonstrate a simple approach to obtain red and green colours through the printing of quantum dots on a blue micro-LED, which allows for the scalable fabrication of full-colour micro-LED displays. This strategy represents a promising route to attain heterogeneous integration, which is essential for high-performance optoelectronic systems that can incorporate the established semiconductor technology and emerging two-dimensional materials.A two-dimensional transition metal dichalcogenide-on-compound-semiconductor fabrication method enables the realization of an active matrix micro-LED display.
Journal Article
Molecularly Imprinted Polymers in Electrochemical and Optical Sensors
by
Ahmad, Omar S.
,
Piletsky, Sergey A.
,
Bedwell, Thomas S.
in
Analgesics
,
Antibiotics
,
Biomarkers
2019
Molecular imprinting is the process of template-induced formation of specific recognition sites in a polymer. Synthetic receptors prepared using molecular imprinting possess a unique combination of properties such as robustness, high affinity, specificity, and low-cost production, which makes them attractive alternatives to natural receptors. Improvements in polymer science and nanotechnology have contributed to enhanced performance of molecularly imprinted polymer (MIP) sensors. Encouragingly, recent years have seen an increase in high-quality publications describing MIP sensors for the determination of biomolecules, drugs of abuse, and explosives, driving toward applications of this technology in medical and forensic diagnostics. This review aims to provide a focused overview of the latest achievements made in MIP-based sensor technology, with emphasis on research toward real-life applications.
Electrochemical and optical sensing based on molecularly imprinted polymers (MIPs) has particular relevance in real-life applications and point-of-care testing in real human samples.
MIPs are a leading technology for sensing molecules where there is no available bioreceptor.
MIP nanoparticles can be used for direct and indirect detection (labeled or label free).
The sensitivity of MIP-based sensors can be enhanced by coupling with nanomaterials such as graphene oxide, carbon nanotubes, or nanoparticles.
The present challenges and perspectives of MIP-based electrochemical and optical sensors include exploring the market niches for MIP sensors and identifying the necessary steps toward commercialization.
Journal Article
Self-powered ultraflexible photonic skin for continuous bio-signal detection via air-operation-stable polymer light-emitting diodes
2021
Ultraflexible optical devices have been used extensively in next-generation wearable electronics owing to their excellent conformability to human skins. Long-term health monitoring also requires the integration of ultraflexible optical devices with an energy-harvesting power source; to make devices self-powered. However, system-level integration of ultraflexible optical sensors with power sources is challenging because of insufficient air operational stability of ultraflexible polymer light-emitting diodes. Here we develop an ultraflexible self-powered organic optical system for photoplethysmogram monitoring by combining air-operation-stable polymer light-emitting diodes, organic solar cells, and organic photodetectors. Adopting an inverted structure and a doped polyethylenimine ethoxylated layer, ultraflexible polymer light-emitting diodes retain 70% of the initial luminance even after 11.3 h of operation under air. Also, integrated optical sensors exhibit a high linearity with the light intensity exponent of 0.98 by polymer light-emitting diode. Such self-powered, ultraflexible photoplethysmogram sensors perform monitoring of blood pulse signals as 77 beats per minute.
Flexible electronic devices remain an attractive technology for optical sensor applications that require long-term health monitoring and conformability on human skin. Here, the authors report an ultrathin self-powered integrated organic optical system for plethysmogram monitoring.
Journal Article
Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters
by
James, David
,
Ahmad, Sajjad
,
Adjovu, Godson Ebenezer
in
Airborne sensing
,
airborne sensors
,
Algorithms
2023
This study provides an overview of the techniques, shortcomings, and strengths of remote sensing (RS) applications in the effective retrieval and monitoring of water quality parameters (WQPs) such as chlorophyll-a concentration, turbidity, total suspended solids, colored dissolved organic matter, total dissolved solids among others. To be effectively retrieved by RS, these WQPs are categorized as optically active or inactive based on their influence on the optical characteristics measured by RS sensors. RS applications offer the opportunity for decisionmakers to quantify and monitor WQPs on a spatiotemporal scale effectively. The use of RS for water quality monitoring has been explored in many studies using empirical, analytical, semi-empirical, and machine-learning algorithms. RS spectral signatures have been applied for the estimation of WQPs using two categories of RS, namely, microwave and optical sensors. Optical RS, which has been heavily applied in the estimation of WQPs, is further grouped as spaceborne and airborne sensors based on the platform they are on board. The choice of a particular sensor to be used in any RS application depends on various factors including cost, and spatial, spectral, and temporal resolutions of the images. Some of the known satellite sensors used in the literature and reviewed in this paper include the Multispectral Instrument aboard Sentinel-2A/B, Moderate Resolution Imaging Spectroradiometer, Landsat Thematic Mapper, Enhanced Thematic Mapper, and Operational Land Imager.
Journal Article
Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction
2023
Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing, a distributed framework that brings computation and data storage closer to the sources of data. In addition to the capability of static image sensing and processing, the hardware implementation of a neuro-inspired vision system also requires the fulfilment of detecting and recognizing moving targets. Here, we demonstrated a neuro-inspired optical sensor based on two-dimensional NbS
2
/MoS
2
hybrid films, which featured remarkable photo-induced conductance plasticity and low electrical energy consumption. A neuro-inspired optical sensor array with 10 × 10 NbS
2
/MoS
2
phototransistors enabled highly integrated functions of sensing, memory, and contrast enhancement capabilities for static images, which benefits convolutional neural network (CNN) with a high image recognition accuracy. More importantly, in-sensor trajectory registration of moving light spots was experimentally implemented such that the post-processing could yield a high restoration accuracy. Our neuro-inspired optical sensor array could provide a fascinating platform for the implementation of high-performance artificial vision systems.
Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing. Here the authors, develop a neuro-inspired optical sensor based on NbS
2
/MoS
2
films that can operate with monolithically integrated functions of static image enhancement and dynamic trajectory registration.
Journal Article