Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,491 result(s) for "Optics, Adaptive"
Sort by:
A New Distortion Solution for NIRC2 on the Keck II Telescope
We present a new geometric distortion model for the narrow-field mode of the near-infrared camera (NIRC2) fed by the adaptive optics system on the W. M. Keck II telescope. The adaptive optics system and NIRC2 camera were realigned on 2015 April 13. Observations of the crowded globular cluster, M53, were obtained before and after the realignment to characterize the geometric field distortion. The distorted NIRC2 positions of M53 stars were compared with precise astrometry of this cluster from Hubble Space Telescope observations. The resulting distortion map constructed just before the realignment is consistent with the previous solution derived using data from 2007 to 2009, indicating that the distortion has been stable to ∼0.5 mas. The distortion map changed significantly after a realignment of 4.5 mas (75%) rms, and the new distortion model for post-realignment observations have a total accuracy of ∼1.1 mas.
First light of the Gemini Planet Imager
The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10 ⁶ at 0.75 arcseconds and 10 ⁵ at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.
The adaptive optics revolution : a history
Duffner has compiled the history of the most revolutionary breakthrough in astronomy since Galileo pointed his telescope skyward--the technology that will greatly expand our understanding of the universe.
DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Introduction to adaptive lenses
\"This is the first book to address the fundamental operation principles, device characteristics, and potential applications of various types of adaptive lenses. Setting out from basic material properties to device structures and performance, this volume covers solid lens, membrane lens, electro-wetting lens, dielectric lens, mechanical-wetting lens, and liquid crystal lenses. Potential applications of these adaptive lenses are also investigated, including image processing and zooming, optical communications, and biomedical imaging. This is an important reference for optical engineers, research scientists, graduate students and undergraduate seniors\"--
Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics
Microglia are resident central nervous system macrophages and the first responders to neural injury. Until recently, microglia have been studied only in animal models with exogenous or transgenic labeling. While these studies provided a wealth of information on the delicate balance between neuroprotection and neurotoxicity within which these cells operate, extrapolation to human immune function has remained an open question. Here we examine key characteristics of retinal macrophage cells in live human eyes, both healthy and diseased, with the unique capabilities of our adaptive optics–optical coherence tomography approach and owing to their propitious location above the inner limiting membrane (ILM), allowing direct visualization of cells. Our findings indicate that human ILM macrophage cells may be distributed distinctly, age differently, and have different dynamic characteristics than microglia in other animals. For example, we observed a macular pattern that was sparse centrally and peaked peripherally in healthy human eyes. Moreover, human ILM macrophage density decreased with age (∼2% of cells per year). Our results in glaucomatous eyes also indicate that ILM macrophage cells appear to play an early and regionally specific role of nerve fiber layer phagocytosis in areas of active disease. While we investigate ILM macrophage cells distinct from the larger sample of overall retinal microglia, the ability to visualize macrophage cells without fluorescent labeling in the live human eye represents an important advance for both ophthalmology and neuroscience, which may lead to novel disease biomarkers and new avenues of exploration in disease progression.
Adaptive optics in microscopy
The imaging properties of optical microscopes are often compromised by aberrations that reduce image resolution and contrast. Adaptive optics technology has been employed in various systems to correct these aberrations and restore performance. This has required various departures from the traditional adaptive optics schemes that are used in astronomy. This review discusses the sources of aberrations, their effects and their correction with adaptive optics, particularly in confocal and two-photon microscopes. Different methods of wavefront sensing, indirect aberration measurement and aberration correction devices are discussed. Applications of adaptive optics in the related areas of optical data storage, optical tweezers and micro/nanofabrication are also reviewed.
Adaptive optics scanning laser ophthalmoscopy in a heterogenous cohort with Stargardt disease
Image based cell-specific biomarkers will play an important role in monitoring treatment outcomes of novel therapies in patients with Stargardt (STGD1) disease and may provide information on the exact mechanism of retinal degeneration. This study reports retinal image features from conventional clinical imaging and from corresponding high-resolution imaging with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO) in a heterogenous cohort of patients with Stargardt (STGD1) disease. This is a prospective observational study in which 16 participants with clinically and molecularly confirmed STGD1, and 7 healthy controls underwent clinical assessment and confocal AOSLO imaging. Clinical assessment included short-wavelength and near-infrared fundus autofluorescence, spectral-domain optical coherence tomography, and macular microperimetry. AOSLO images were acquired over a range of retinal eccentricities (0°–20°) and mapped to areas of interest from the clinical images. A regular photoreceptor mosaic was identified in areas of normal or near normal retinal structure on clinical images. Where clinical imaging indicated areas of retinal degeneration, the photoreceptor mosaic was disorganised and lacked unambiguous cones. Discrete hyper-reflective foci were identified in 9 participants with STGD1 within areas of retinal degeneration. A continuous RPE cell mosaic at the fovea was identified in one participant with an optical gap phenotype. The clinical heterogeneity observed in STGD1 is reflected in the findings on confocal AOSLO imaging.
Investigations of an Accelerometer-based Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes
Adaptive Optics (AO) systems in large telescopes do not only correct atmospheric phase disturbances, but they also telescope structure vibrations induced by wind or telescope motions. Often the additional wavefront error due to mirror vibrations can dominate the disturbance power and contribute significantly to the total tip-tilt Zernike mode error budget. Presently, these vibrations are compensated for by common feedback control laws. However, when observing faint natural guide stars (NGS) at reduced control bandwidth, high-frequency vibrations (>5 Hz) cannot be fully compensated for by feedback control. In this paper, we present an additional accelerometer-based disturbance feedforward control (DFF), which is independent of the NGS wavefront sensor exposure time to enlarge the \"effective servo bandwidth\". The DFF is studied in a realistic AO end-to-end simulation and compared with commonly used suppression concepts. For the observation in the faint (>13 mag) NGS regime, we obtain a Strehl ratio by a factor of two to four larger in comparison with a classical feedback control. The simulation realism is verified with real measurement data from the Large Binocular Telescope (LBT); the application for on-sky testing at the LBT and an implementation at the E-ELT in the MICADO instrument is discussed.