Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Optimització combinatòria"
Sort by:
Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic
by
Marquès, Joan M.
,
Juan, Angel A.
,
de Armas, Jesica
in
Algorithms
,
Business and Management
,
Combinatorial analysis
2017
The uncapacitated facility location problem (UFLP) is a popular combinatorial optimization problem with practical applications in different areas, from logistics to telecommunication networks. While most of the existing work in the literature focuses on minimizing total cost for the deterministic version of the problem, some degree of uncertainty (e.g., in the customers' demands or in the service costs) should be expected in real-life applications. Accordingly, this paper proposes a simheuristic algorithm for solving the stochastic UFLP (SUFLP), where optimization goals other than the minimum expected cost can be considered. The development of this simheuristic is structured in three stages: (i) first, an extremely fast savings-based heuristic is introduced; (ii) next, the heuristic is integrated into a metaheuristic framework, and the resulting algorithm is tested against the optimal values for the UFLP; and (iii) finally, the algorithm is extended by integrating it with simulation techniques, and the resulting simheuristic is employed to solve the SUFLP. Some numerical experiments contribute to illustrate the potential uses of each of these solving methods, depending on the version of the problem (deterministic or stochastic) as well as on whether or not a real-time solution is required.
Journal Article
Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs
by
Masip, David
,
Armas, Jésica de
,
Juan, Angel A.
in
algorismes híbrids
,
Algorithms
,
algoritmos híbridos
2017
This paper reviews the existing literature on the combination of metaheuristics with machine learning methods and then introduces the concept of learnheuristics, a novel type of hybrid algorithms. Learnheuristics can be used to solve combinatorial optimization problems with dynamic inputs (COPDIs). In these COPDIs, the problem inputs (elements either located in the objective function or in the constraints set) are not fixed in advance as usual. On the contrary, they might vary in a predictable (non-random) way as the solution is partially built according to some heuristic-based iterative process. For instance, a consumer’s willingness to spend on a specific product might change as the availability of this product decreases and its price rises. Thus, these inputs might take different values depending on the current solution configuration. These variations in the inputs might require from a coordination between the learning mechanism and the metaheuristic algorithm: at each iteration, the learning method updates the inputs model used by the metaheuristic.
Journal Article
Residual-Guided Look-Ahead in AND/OR Search for Graphical Models
by
Dechter, Rina
,
Lam, William
,
Larrosa, Javier
in
Artificial intelligence
,
Combinatorial analysis
,
Combinatorial optimization
2017
We introduce the concept of local bucket error for the mini-bucket heuristics and show how it can be used to improve the power of AND/OR search for combinatorial optimization tasks in graphical models (e.g. MAP/MPE or weighted CSPs). The local bucket error illuminates how the heuristic errors are distributed in the search space, guided by the mini-bucket heuristic. We present and analyze methods for compiling the local bucket-errors (exactly and approximately) and show that they can be used to yield an effective tool for balancing look-ahead overhead during search. This can be especially instrumental when memory is restricted, accommodating the generation of only weak compiled heuristics. We illustrate the impact of the proposed schemes in an extensive empirical evaluation for both finding exact solutions and anytime suboptimal solutions.
Journal Article
Statistical and cognitive optimization of experimental designs in conjoint analysis
by
Miravitlles, Paloma
,
Nuñez-Carballosa, Ana
,
Huertas-García, Rubén
in
Cognition
,
Cognitive ability
,
Concept formation
2016
Conjoint analysis has become the most used technique for measuring preferences for new products to be launched in the market. Experimental design models are key elements for its use in market research. Such models involve a matrix in which attributes and levels are combined, making product concepts that respondents then evaluate. Experimental design has emerged as a key element in conjoint analysis' success because its application generates statistical and reliability implications for part-worth factor estimations and for the type of heuristics followed by respondents. This paper proposes a conceptualization of both statistical and cognitive efficiency criteria for experimental designs. A review of the most used statistical optimization criteria is presented, as well as a methodology for optimizing cognitive efficiency. Finally, we suggest a dynamic algorithm for optimizing the objective function in a sequential manner.
Journal Article
Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam
2012
Rationale
Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes.
Objectives
To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches.
Methods
EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence.
Results
Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study.
Conclusions
Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.
Journal Article
Ant Colony Optimization
by
Dorigo, Marco
,
Stützle, Thomas
in
Ants
,
Ants - Behavior - Mathematical models
,
Computer Science
2004
The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses.The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.