Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
211,259 result(s) for "Optimization algorithms"
Sort by:
Crayfish optimization algorithm
This paper proposes a meta heuristic optimization algorithm, called Crayfish Optimization Algorithm (COA), which simulates crayfish’s summer resort behavior, competition behavior and foraging behavior. The three behaviors are divided into three different stages to balance the exploration and exploitation of algorithm. The three stages are summer resort stage, competition stage and foraging stage. The summer resort stage represents the exploration stage of the COA. The competition stage and foraging stage represent the exploitation stage of the COA. Exploration and exploitation of COA are regulated by temperature. When the temperature is too high, crayfish will enter the cave for summer vacation or compete for the same cave. When the temperature is appropriate, crayfish have different foraging behaviors according to the size of food. Among them, the amount of food eaten by crayfish is related to food intake. Through temperature regulate exploration and exploitation process in COA, the COA has higher randomness and global optimization effect. To verify the optimization effect of COA, in the experimental part, 23 standard benchmark functions and CEC2014 benchmark functions are used to test, and 9 algorithms are selected for comparative experiments. The experimental results show that COA can balance the exploration and exploitation, and achieve good optimization effect. Finally, the COA is tested in five engineering problems, and finally achieves better results. The source code website for COA is https://github.com/rao12138/COA-s-code.
Metaheuristics for maritime operations
'Metaheuristic Algorithms in Maritime Operations' focuses on the seaside and port side problems regarding the maritime transportation. The book reviews and introduces the most important problems regarding the shipping network design, long-term and short-term scheduling and planning problems in both bulk and container shipping as well as liquid maritime transportation. Application of meta heuristic algorithm is important for these problems, as most of them are hard and time-consuming to be solved optimally.
Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning
Optimization techniques, particularly meta-heuristic algorithms, are highly effective in optimizing and enhancing efficiency across diverse models and systems, renowned for their ability to attain optimal or near-optimal solutions within a reasonable timeframe. In this work, the Puma Optimizer (PO) is proposed as a new optimization algorithm inspired from the intelligence and life of Pumas in. In this algorithm, unique and powerful mechanisms have been proposed in each phase of exploration and exploitation, which has increased the algorithm’s performance against all kinds of optimization problems. In addition, a new type of intelligent mechanism, which is a type of hyper-heuristic for phase change, is presented. Using this mechanism, the PO algorithm can perform a phase change operation during the optimization operation and balance both phases. Each phase is automatically adjusted to the nature of the problem. To evaluate the proposed algorithm, 23 standard functions and CEC2019 functions were used and compared with different types of optimization algorithms. Moreover, using the statistical test T-test and the execution time to solve the problem have been discussed. Finally, it has been tested using four machine learning and data mining problems, and the results obtained from all the analysis signifies the excellent performance of this algorithm against all kinds of problems compared to other optimizers. This algorithm has performed better than the compared algorithms in 27 benchmarks out of 33 benchmarks and has obtained better results in solving the clustering problem in 7 data sets out of 10 data sets. Furthermore, the results obtained in the problems of community detection and feature selection and MLP were superior. The source codes of the PO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/157231-puma-optimizer-po .
Handbook of AI-based metaheuristics
\"At the heart of the optimization domain are mathematical modelling of the problem and the solution methodologies. In recent times, the problems are becoming larger, with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to Artificial Intelligence (AI) based nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications, as well as newly devised metaheuristic algorithms. The book will be a valuable reference to researchers from industry and academia, as well as Masters and PhD students around the globe working in the metaheuristics and applications domain\"-- Provided by publisher.
A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments
Efficient task scheduling is considered as one of the main critical challenges in cloud computing. Task scheduling is an NP-complete problem, so finding the best solution is challenging, particularly for large task sizes. In the cloud computing environment, several tasks may need to be efficiently scheduled on various virtual machines by minimizing makespan and simultaneously maximizing resource utilization. We present a novel hybrid antlion optimization algorithm with elite-based differential evolution for solving multi-objective task scheduling problems in cloud computing environments. In the proposed method, which we refer to as MALO, the multi-objective nature of the problem derives from the need to simultaneously minimize makespan while maximizing resource utilization. The antlion optimization algorithm was enhanced by utilizing elite-based differential evolution as a local search technique to improve its exploitation ability and to avoid getting trapped in local optima. Two experimental series were conducted on synthetic and real trace datasets using the CloudSim tool kit. The results revealed that MALO outperformed other well-known optimization algorithms. MALO converged faster than the other approaches for larger search spaces, making it suitable for large scheduling problems. Finally, the results were analyzed using statistical t-tests, which showed that MALO obtained a significant improvement in the results.
Sea Lion Optimization Algorithm
This paper suggests a new nature inspired metaheuristic optimization algorithm which is called Sea Lion Optimization (SLnO) algorithm. The SLnO algorithm imitates the hunting behavior of sea lions in nature. Moreover, it is inspired by sea lions' whiskers that are used in order to detect the prey. SLnO algorithm is tested with 23 well-known test functions (Benchmarks). Optimization results show that the SLnO algorithm is very competitive compared to Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Sine Cosine Algorithm (SCA) and Dragonfly Algorithm (DA).
Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer
This study proposes a novel population-based metaheuristic algorithm called the Gazelle Optimization Algorithm (GOA), inspired by the gazelles’ survival ability in their predator-dominated environment. Every day, the gazelle knows that if it does not outrun and outmaneuver its predators, it becomes meat for the day, and to survive, the gazelles have to escape from their predators consistently. This information is vital to proposing a new metaheuristic algorithm that uses the gazelle’s survival abilities to solve real-world optimization problems. The exploitation phase of the algorithm simulates the gazelles grazing peacefully in the absence of the predator or while the predator is stalking it. The GOA goes into the exploration phase once a predator is spotted. The exploration phase consists of the gazelle outrunning and outmaneuvering the predator to a safe haven. These two phases are iteratively repeated, subject to the termination criteria, and finding optimal solutions to the optimization problems. The robustness and efficiency of the developed algorithm as an optimization tool were tested using benchmark optimization test functions and selected engineering design problems (fifteen classical, ten composited functions, and four mechanical engineering design problems). The results of the GOA are compared with nine other state-of-the-art algorithms. The simulation results obtained confirm the superiority and competitiveness of the GOA algorithm over nine state-of-the-art algorithms available in the literature. Also, the standard statistical analysis test carried out on the results further confirmed the ability of GOA to find solutions to the selected optimization problems. It also showed that GOA performed better or, in some cases, was very competitive with some state-of-the-art algorithms. Also, the results show that GOA is a potent tool for optimization that can be adapted to solve problems in different optimization domains.
Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey
Advancements in electronics and software have enabled the rapid development of unmanned aerial vehicles (UAVs) and UAV-assisted applications. Although the mobility of UAVs allows for flexible deployment of networks, it introduces challenges regarding throughput, delay, cost, and energy. Therefore, path planning is an important aspect of UAV communications. Bio-inspired algorithms rely on the inspiration and principles of the biological evolution of nature to achieve robust survival techniques. However, the issues have many nonlinear constraints, which pose a number of problems such as time restrictions and high dimensionality. Recent trends tend to employ bio-inspired optimization algorithms, which are a potential method for handling difficult optimization problems, to address the issues associated with standard optimization algorithms. Focusing on these points, we investigate various bio-inspired algorithms for UAV path planning over the past decade. To the best of our knowledge, no survey on existing bio-inspired algorithms for UAV path planning has been reported in the literature. In this study, we investigate the prevailing bio-inspired algorithms extensively from the perspective of key features, working principles, advantages, and limitations. Subsequently, path planning algorithms are compared with each other in terms of their major features, characteristics, and performance factors. Furthermore, the challenges and future research trends in UAV path planning are summarized and discussed.
GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond
This study proposes the GOOSE algorithm as a novel metaheuristic algorithm based on the goose's behavior during rest and foraging. The goose stands on one leg and keeps his balance to guard and protect other individuals in the flock. The GOOSE algorithm is benchmarked on 19 well-known benchmark test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), and fitness dependent optimizer (FDO). In addition, the proposed algorithm is tested on 10 modern benchmark functions, and the gained results are compared with three recent algorithms, such as the dragonfly algorithm, whale optimization algorithm (WOA), and salp swarm algorithm (SSA). Moreover, the GOOSE algorithm is tested on 5 classical benchmark functions, and the obtained results are evaluated with six algorithms, such as fitness dependent optimizer (FDO), FOX optimizer, butterfly optimization algorithm (BOA), whale optimization algorithm, dragonfly algorithm, and chimp optimization algorithm (ChOA). The achieved findings attest to the proposed algorithm's superior performance compared to the other algorithms that were utilized in the current study. The technique is then used to optimize Welded beam design and Economic Load Dispatch Problems, Pressure vessel Design Problems, and the Pathological IgG Fraction in the Nervous System, four renowned real-world challenges. The outcomes of the engineering case studies illustrate how well the suggested approach can optimize issues that arise in the real-world.