Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9
result(s) for
"Orc1 gene"
Sort by:
MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome
by
Mattevi, Andrea
,
Vetro, Annalisa
,
Zuffardi, Orsetta
in
Aplasia
,
Cdc45 protein
,
Cell Cycle Proteins - genetics
2017
Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.
Journal Article
Deciphering structure, function and mechanism of lysine acetyltransferase HBO1 in protein acetylation, transcription regulation, DNA replication and its oncogenic properties in cancer
2020
HBO1 complexes are major acetyltransferase responsible for histone H4 acetylation in vivo, which belongs to the MYST family. As the core catalytic subunit, HBO1 consists of an N-terminal domain and a C-terminal MYST domain that are in charge of acetyl-CoA binding and acetylation reaction. HBO1 complexes are multimeric and normally consist of two native subunits MEAF6, ING4 or ING5 and two kinds of cofactors as chromatin reader: Jade-1/2/3 and BRPF1/2/3. The choices of subunits to form the HBO1 complexes provide a regulatory switch to potentiate its activity between histone H4 and H3 tails. Thus, HBO1 complexes present multiple functions in histone acetylation, gene transcription, DNA replication, protein ubiquitination, and immune regulation, etc. HBO1 is a co-activator for CDT1 to facilitate chromatin loading of MCM complexes and promotes DNA replication licensing. This process is regulated by mitotic kinases such as CDK1 and PLK1 by phosphorylating HBO1 and modulating its acetyltransferase activity, therefore, connecting histone acetylation to regulations of cell cycle and DNA replication. In addition, both gene amplification and protein overexpression of HBO1 confirmed its oncogenic role in cancers. In this paper, we review the recent advances and discuss our understanding of the multiple functions, activity regulation, and disease relationship of HBO1.
Journal Article
Dynamics of Replication-Associated Protein Levels through the Cell Cycle
by
Uzunova, Sonya
,
Kanev, Petar-Bogomil
,
Nedelcheva-Veleva, Marina
in
Artificial chromosomes
,
Cell Cycle
,
Cell Cycle Proteins - genetics
2024
The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.
Journal Article
Origin recognition complex subunit 1(ORC1) is a potential biomarker and therapeutic target in cancer
2023
Background
The origin recognition complex 1 (ORC1) is a large subunit of the origin recognition complex and acts as the master subunit of the precoding complex.
Objective
To explore potential function and clinical significance of ORC1 in cancers.
Methods
The expression level of ORC1 in different types of tumor tissues and matched normal tissues were detected by The Cancer Genome Atlas (TCGA) and validated by datasets from the gene expression omnibus (GEO) database. The association between ORC1 expression and infiltration levels of immune cell was analyzed. ORC1 and its co-expression genes were subjected to enrichment analysis to explore potential mechanisms in cancers, and the protein-protein interaction (PPI) network was constructed. Finally, the expression of ORC1 in tumor tissue and adjacent tissue was verified by immunohistochemistry (IHC).
Results
ORC1 was highly expressed in the majority of tumors, and the expression level of ORC1 was associated with the pathological stages of ACC, LUAD, OV and SKCM. ORC1 was closely related with poor prognosis in ACC, LIHC, PAAD, READ and THCA. ORC1 in ACC and KICH was positively correlated with the infiltration level of immune cells while it was negatively correlated with the infiltration level of immune cells in THYM. Co-expression network analysis showed that CDCA3, GSG2, KIF2C, NCAPH and PLK1 were positively correlated with ORC1 in cancer, and enrichment analysis showed a correlation with cytosol, ATP binding and cell division. The expression of ORC1 in UCEC and KICH was higher than that in the adjacent tissues.
Conclusion
ORC1 over-expressed in most tumors and could be severed as a novel biomarker for diagnosis. This study revealed that ORC1 might inhibit tumor immunity and might be a potential therapeutic target in cancers.
Journal Article
Arabidopsis ORC1 is a PHD-containing H3K4me3 effector that regulates transcription
by
Gutierrez, Crisanto
,
de la Paz Sanchez, María
in
Acetylation
,
Arabidopsis
,
Arabidopsis - genetics
2009
Control of gene expression depends on a complex and delicate balance of various posttranslational modifications of histones. However, the relevance of specific combinations of histone modifications is not fully defined. Downstream effector proteins recognize particular histone modifications and transduce this information into gene expression patterns. Methylation of histone H3 at lysine 4 (H3K4me) is a landmark of gene expression control in eukaryotes. Its recognition depends on the presence in the effector protein of a motif termed plant homeodomain (PHD) that specifically binds to H3K4me3. Here, we establish that Arabidopsis ORC1, the large subunit of the origin recognition complex involved in defining origins of DNA replication, functions as a transcriptional activator of a subset of genes, the promoters of which are preferentially bound by ORC1. Arabidopsis ORC1 contains a PHD and binds to H3K4me3. In addition to H4 acetylation, ORC1 binding correlates with increased H4K20me3 in the proximal promoter region of ORC1 targets. This suggests that H4K20me3, unlike in animal cells, is associated with transcriptional activation in ARABIDOPSIS: Thus, our data provide a molecular basis for the opposite role of ORC1 in transcriptional activation in plants and repression in animals. Since only ORC1 proteins of plant species contain a PHD, we propose that plant ORC1 constitutes a novel class of H3K4me3 effector proteins characteristic of the plant kingdom.
Journal Article
Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation
by
Ladurner, Andreas G
,
Keusch, Jeremy J
,
Gasser, Susan M
in
Amino Acid Sequence
,
Amino acids
,
Chromatin
2013
Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes
in vitro
and eliminates silencing at telomeres and
HM
loci
in vivo
. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both
HM
and telomeric repression in s
ir3
Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.
Sir3 causes heterochromatic gene silencing through interactions with nucleosomes, which are facilitated by homo‐dimerization via its conserved C‐terminal tail.
Journal Article
origin recognition complex is dispensable for endoreplication in Drosophila
2008
The origin recognition complex (ORC) is an essential component of the prereplication complex (pre-RC) in mitotic cell cycles. The role of ORC as a foundation to assemble the pre-RC is conserved from yeast to human. Furthermore, in metazoans ORC plays a key role in determining the timing of replication initiation and origin usage. In this report we have produced and analyzed a Drosophila orc1 allele to investigate the roles of ORC1 in three different modes of DNA replication during development. As expected, ORC1 is essential for mitotic replication and proliferation in brains and imaginal discs, as well as for gene amplification in ovarian follicle cells. Surprisingly, however, ORC1 is not required for endoreplication. Decreased cell number in orc1 mutant salivary glands is consistent with the idea that undetectable levels of maternal ORC1 during embryogenesis fail to support further proliferation. Nevertheless, these cells begin endoreplicating normally and reach a final ploidy of >1000C in the absence of zygotic synthesis of ORC1. The dispensability of ORC is further supported by an examination of other ORC members, whereas Double-parked protein/Cdt1 and minichromosome maintenance proteins are apparently essential for endoreplication, implying that some aspects of initiation are shared among the three modes of DNA replication. This study provides insight into the physiologic roles of ORC during metazoan development and proposes that DNA replication initiation is governed differently in mitotic and endocycles.
Journal Article
ATP Bound to the Origin Recognition Complex is Important for preRC Formation
by
Stephen P. Bell
,
Richard D. Klemm
in
Adenosine triphosphatases
,
adenosine triphosphate
,
Adenosine Triphosphate - metabolism
2001
The origin recognition complex (ORC) binds origins of replication and directs the assembly of a higher order protein complex at these sites. ORC binds and hydrolyzes ATP in vitro. ATP binding to the largest subunit of ORC, Orc1p, stimulates specific binding to origin DNA; however, the function of ATP hydrolysis by ORC is unknown. To address the role of ATP hydrolysis, we have generated mutants within Orc1p that are dominant lethal. At physiological ATP concentrations, these mutants are defective for ATP hydrolysis but not ATP binding in the absence of DNA. These mutants inhibit formation of the prereplicative complex when overexpressed. The dominant lethal phenotype of these mutant ORC complexes is suppressed by simultaneous overexpression of wild-type, but not mutant, Cdc6p. Our findings suggest that these hydrolysis-defective mutants inhibit growth by titrating Cdc6p away from the origin. Based on these observations, we propose that Cdc6p specifically recognizes the ATP-bound state of Orc1p and that ATP hydrolysis is coupled to preRC disassembly.
Journal Article
DNA elements modulating the KARS12 chromosomal replicator in Kluyveromyces lactis
by
Micheli, Gioacchino
,
Newlon, Carol S
,
Theis, James F
in
Abf1p binding site
,
Autonomous replicating sequence (ARS)
,
Bacteria
2007
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.
Journal Article