Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
31,094 result(s) for "Ores"
Sort by:
Mineralogy of uranium and thorium
\"For students of geology, this book offers a systematic overview of uranium and thorium minerals, which are known for their intense ultraviolet fluorescence and are critically important as our source of nuclear energy. Learn about the geochemical conditions that produce significant ore deposits and view more than 600 maps, structure diagrams, color photos, and electron micrographs. A web link allows readers to view the more than 130 crystal structures in three dimensions for a richer appreciation of their details. The minerals are arranged to emphasize how they fit into chemical groups, and a thorough description is provided for each mineral. Major occurrences of interest to mineral collectors are arranged geographically, with maps showing the important deposits in uranium-producing countries. With the resurgence of interest in nuclear power, this book will be invaluable to mineral collectors and exploration geologists as well as to nuclear scientists and engineers interested in radioactive deposits.\" --Book jacket.
Precious-Metal Mineralization in Gabbroids of the Kumba Intrusive, Uralian Platinum Belt (North Urals)
The paper presents the first data on the distribution and composition of copper–precious-metal mineralization in gabbroids of the Kumba intrusive (North Urals). The precious-metal mineralization is associated with digenite–bornite, bornite-chalcopyrite, and pyrite–chalcopyrite ores. Nine precious-metal minerals and their varieties were identified in amphibole and amphibole–olivine gabbro of the Kumba intrusive for the first time: native gold, Au–Ag alloys, Ag and Pd tellurides (hessite, merenskyite), Bi tellurides (kotulskite), antimonide–arsenides (isomertieite), arsenides (arsenopalladinite, sperrylite), and stannides (atokite) of Pt and Pd. Precious-metal minerals from all sulfide assemblages in heavy concentrates are often accompanied by antimonides (stibnite) and Bi mineralization represented mainly by native bismuth and bismuthinite and less common sulfotellurides (baksanite) and tellurides (tsumoite). Our results make it possible to estimate the prospects of the discovery of new copper–precious-metal deposits hosted in gabbro of the Uralian Platinum Belt. Taking into account the regularities of distribution of precious metal and copper mineralization, most gabbro massifs in the Uralian Platinum Belt can be considered the promising objects for searching the large-tonnage copper deposits with associated ore Au and Pd grades.
A stable isotope (S, C and O) study of metamorphosed polymetallic sulphide deposits in the Bergslagen district, Sweden: The Stollberg example
The Paleoproterozoic Stollberg Zn-Pb-Ag plus magnetite ore field contains SVALS-type stratabound, limestone-skarn hosted sulphide deposits within volcanic (bimodal felsic and mafic rocks)/volcaniclastic rocks metamorphosed to the amphibolite facies. The sulphide ores consist of semi-massive to disseminated to vein-network sphalerite-galena and pyrrhotite (with subordinate pyrite, chalcopyrite, arsenopyrite and magnetite). Thermochemical considerations and stabilities of minerals in the systems K-Al-Si-O-H and Fe-S-O and sulphur isotope values for sulphides of δ34SVCDT = +1.12 to +5.71 ‰ suggest that sulphur most likely formed by inorganic reduction of seawater sulphate that was carried in hydrothermally modified seawater fluid under the following approximate physicochemical conditions: T = 250o–350 oC, δ34SΣS = +3 ‰, I = ∼1 m NaCl and a total dissolved S content of ∼0.01 to 0.1 moles/kg H2O. However, a magmatic contribution of sulphur cannot be discounted. Carbon and oxygen isotope compositions of calcite in altered rocks spatially associated with mineralisation show values of δ13CVPDB = −2.3 to −0.8 ‰ and δ18OVSMOW = +9.5 to +11.2 ‰, with one anomalous sample exhibiting values of δ13CVPDB = −0.1 ‰ and δ18OVSMOW = +10.9 ‰. Most carbonates in ore show lighter C and O isotope values than those of Proterozoic (Orosirian) limestones and are likely the result of premetamorphic hydrothermal alteration involving modified seawater followed by decarbonation during regional metamorphism. The isotopically light C and O isotope values are consistent with those for carbonates spatially associated with other SVALS-type deposits in the Bergslagen ore district and suggest that such values may be used for exploration purposes.
Wills' Mineral Processing Technology - An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery (8th Edition)
This book has been the definitive reference for the mineral processing industry for over thirty years. This industry standard reference provides practicing engineers and students of mineral processing, metallurgy, and mining with practical information on all the common techniques used in modern processing installations. Each chapter is dedicated to a major processing procedure-from underlying principles and technologies to the latest developments in strategies and equipment for processing increasingly complex refractory ores. The 8th Edition of this classic reference enhances coverage of practical applications via the inclusion of new material focused on meeting the pressing demand for ever greater operational efficiency, while addressing the pivotal challenges of waste disposal and environmental remediation. Advances in automated mineralogy and analysis and high-pressure grinding rolls are given dedicated coverage. The new edition also contains more detailed discussions of comminution efficiency, classification, modeling, flocculation, reagents, liquid-solid separations, and beneficiation of phosphate, and industrial materials.
Uranium geology of the Middle East and North Africa : resources, exploration and development program
Uranium Geology of the Middle East and North Africa demonstrates mining potential in the MENA region, with a special interest given to Uranium. The formation and origin of uranium deposits is of interest for uranium exploration and is necessary for the long-term sustainability of nuclear energy production. The book proposes a new classification system built on earlier classification with detailed new maps, explanatory diagrams, cross sections, helpful satellite images, etc. In addition, it explains why the occurrences, depositional and geological environments of uranium in the Middle East and North Africa vary from one country to another. Using various related recognition criteria, the book reports the potential uranium provinces in the Middle East and North Africa countries. The definition of these provinces is based on the existing geologic and tectonic settings, along with geochronological sequences and geochemical characteristics.
Cu isotope systematics of conduit-type Cu–PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada
Chalcopyrite from the Cu–PGE sulfide deposits in the Eastern Gabbro, Coldwell Complex, Canada, exhibit a > 2‰ variation in δ65Cu. In the Marathon deposit, the δ65Cu of chalcopyrite increases from the lower Footwall Zone (− 1.49 to − 0.75‰), to the Main Zone (− 1.04 to 0.08‰), to the upper W Horizon (− 0.35 to 1.07‰). In the northern deposits, chalcopyrite at Four Dams and Sally have δ65Cu that range from − 0.08 to 0.47‰ and − 0.59 to − 0.05‰, respectively. Notably, samples from the Marathon deposit with lower chalcopyrite δ65Cu values tend to have higher S/Se and Cu/Pd ratios. Integrated geological and geochemical evidence suggests that secondary hydrothermal alteration and redox processes are unlikely to have been the primary causes of the observed Cu isotope variation. Numerical modeling of δ65Cu–Cu/Pd–S/Se of mineralization in the Eastern Gabbro illustrates three key aspects of Cu isotope behavior in magmatic Ni–Cu–PGE systems. First, R factors less than ~ 10,000 can exhibit significant control on the δ65Cu of sulfides. Second, sulfide liquid–silicate melt fractionation factors for Cu (Δ65Cusul–sil) greater than − 0.5‰ are applicable to Ni–Cu–PGE systems. Third, sulfide segregation exhibits no measurable control on the δ65Cu of sulfides at degrees of fractionation typical of Ni–Cu–PGE systems (< 0.3%). In the Marathon deposit, the range of δ65Cu–S/Se–Cu/Pd is attributed to the addition of Archean sedimentary Cu to a pool of sulfide liquid located at depth, followed by progressive dilution of the contaminated δ65Cu–S/Se signature and decrease in Cu/Pd ratio by influxes of uncontaminated pulses of magma (i.e., increasing R factor), some of which had Cu isotope compositions heavier than the mantle. Variably contaminated and enriched, with respect to Pd, sulfides from this pool were entrained by magma pulses and emplaced to form the Marathon deposit. This contribution demonstrates that Cu isotopes can fractionate at high temperatures and, when combined with other geochemical proxies, can be valuable in characterizing magmatic–post-magmatic processes in Ni–Cu–PGE sulfide deposits and for identifying PGE-rich sulfide deposits.
Trace elements and Sr-Nd isotopes of scheelite; implications for the W-Cu-Mo polymetallic mineralization of the Shimensi Deposit, south China
The Shimensi deposit (South China) is a newly discovered W-Cu-Mo polymetallic deposit with a reserve of 0.76 million tones WO3, one of the largest tungsten deposits in the world. We report elemental and Sr-Nd isotopic data for scheelites from the giant deposit, to determine the source region and genesis of the deposit. Scheelite is the most important ore mineral in the Shimensi deposit. Trace elements (including REEs) and Nd-Sr isotopic compositions of scheelites were used to constrain the origin of the mineralizing fluids and metals. Our data reveal that the REEs of scheelite are mainly controlled by the substitution mechanism 3Ca2+ = 2REE3++ ∎Ca, where ∎Ca is a Ca-site vacancy. Scheelites from the Shimensi deposit show negative Eu anomalies in some samples, but positive Eu anomalies in others in the chondrite-normalized REE patterns. The variation of Eu anomalies recorded the ore-forming processes. Considering the close spatial and temporal relationship between the mineralization and porphyritic granite, we think the negative Eu anomalies were inherited from the porphyritic granite and the positive ones from destruction of plagioclase of country rock during fluid-rock interaction. The variation of cathodeluminescence (CL) color of a single scheelite from red to blue and to yellow was likely associated with the increase of REE contents. The scheelites hosted in the Mesozoic porphyritic granite with negative Eu anomalies formed in a primitive ore-forming fluid, whereas the scheelites hosted in Neoproterozoic granite with positive Eu anomalies precipitated in an evolved ore-forming fluid. The high Nb, Ta, LREE contents, and LREE-enriched REE patterns of scheelites from the Shimensi deposit reveal a close relationship with magmatic hydrothermal fluids. The scheelites from the Shimensi deposit are characterized by low εNd(t) values (-6.1 ∼ -8.1) and unusually high and varied initial 87Sr/86Sr ratios (0.7230∼0.7657). The εNd(t) values of scheelites are consistent with those of the Mesozoic porphyritic granite, but the Sr isotopic ratios are significantly higher than those of the granites, and importantly, beyond the Sr isotopic range of normal granites. This suggests that the ore-forming fluids and metals cannot be attributed to the Mesozoic porphyritic granites alone, the local Neoproterozoic Shuangqiaoshan Group schists/gneisses with high Rb/Sr ratios and thus radiogenic Sr isotopic compositions should have contributed to the ore-forming fluids and metals, particularly, in a later stage of ore-forming process, by intense fluid-rock interaction. This is different from a commonly accepted model that the ore-forming fluids and metals were exsolved exclusively from the granite plutons.