Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8,129
result(s) for
"Organ Specificity - genetics"
Sort by:
Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
by
Vaishnav, Eeshit Dhaval
,
Montoro, Daniel T.
,
Smillie, Christopher
in
631/114
,
631/250
,
631/326/596/4130
2021
Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of
ACE2
,
TMPRSS2
and
CTSL
across 107 single-cell RNA-sequencing studies from different tissues.
ACE2
,
TMPRSS2
and
CTSL
are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of
ACE2
,
TMPRSS2
and
CTSL
. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by
ACE2
+
TMPRSS2
+
cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial–macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.
An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
Journal Article
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse
2020
Ageing is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death
1
. Despite rapid advances over recent years, many of the molecular and cellular processes that underlie the progressive loss of healthy physiology are poorly understood
2
. To gain a better insight into these processes, here we generate a single-cell transcriptomic atlas across the lifespan of
Mus musculus
that includes data from 23 tissues and organs. We found cell-specific changes occurring across multiple cell types and organs, as well as age-related changes in the cellular composition of different organs. Using single-cell transcriptomic data, we assessed cell-type-specific manifestations of different hallmarks of ageing—such as senescence
3
, genomic instability
4
and changes in the immune system
2
. This transcriptomic atlas—which we denote
Tabula Muris Senis
, or ‘Mouse Ageing Cell Atlas’—provides molecular information about how the most important hallmarks of ageing are reflected in a broad range of tissues and cell types.
A single-cell transcriptomic atlas across the lifespan of the mouse, denoted
Tabula Muris Senis
, provides molecular information about the hallmarks of ageing in a range of tissues and cell types.
Journal Article
Temporal dynamics of the multi-omic response to endurance exercise training
2024
Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood
1
–
3
. Here, the Molecular Transducers of Physical Activity Consortium
4
profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female
Rattus norvegicus
over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository (
https://motrpac-data.org/
).
Temporal multi-omic analysis of tissues from rats undergoing up to eight weeks of endurance exercise training reveals widespread shared, tissue-specific and sex-specific changes, including immune, metabolic, stress response and mitochondrial pathways.
Journal Article
Alternative splicing during mammalian organ development
by
Mazin, Pavel V.
,
Khaitovich, Philipp
,
Cardoso-Moreira, Margarida
in
38/91
,
631/136/2060
,
631/208/199
2021
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Analysis of RNA-seq datasets from seven organs across seven species generates an alternative splicing (AS) atlas and shows that AS events provide functional gene diversification through generation of tissue- and time-specific transcript isoforms.
Journal Article
An atlas of human long non-coding RNAs with accurate 5′ ends
by
Heutink, Peter
,
Carninci, Piero
,
Bertin, Nicolas
in
631/208/191/2018
,
631/208/726/2102
,
631/337/384/2568
2017
Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.
Journal Article
Regulatory genomic circuitry of human disease loci by integrative epigenomics
2021
Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete
1
,
2
–
3
. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 20,000 genetic loci that were associated with 232 traits
4
, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.
The authors present EpiMap, a compendium that comprises 10,000 epigenomic maps across more than 800 biosamples for the annotation of genome-wide association study circuitry.
Journal Article
Genetic effects on gene expression across human tissues
2017
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Samples of different body regions from hundreds of human donors are used to study how genetic variation influences gene expression levels in 44 disease-relevant tissues.
Genetic effects on gene expression across human tissues
The GTEx (Genotype-Tissue Expression) Consortium has established a reference catalogue and associated tissue biobank for gene-expression levels across individuals for diverse tissues of the human body, with a broad sampling of normal, non-diseased human tissues from postmortem donors. The consortium now presents the deepest survey of gene expression across multiple tissues and individuals to date, encompassing 7,051 samples from 449 donors across 44 human tissues. Barbara Engelhardt and colleagues characterize the relationship between genetic variation and gene expression, and find that most genes are regulated by genetic variation near to the affected gene. In accompanying GTEx studies, Alexis Battle, Stephen Montgomery and colleagues examine the effect of rare genetic variation on gene expression across human tissues, Daniel MacArthur and colleagues systematically survey the landscape of X chromosome inactivation in human tissues, and Jin Billy Li and colleagues provide a comprehensive cross-species analysis of adenosine-to-inosine RNA editing in mammals. In an accompanying News & Views, Michelle Ward and Yoav Gilad put the latest results in context and discuss how these findings are helping to crack the regulatory code of the human genome.
Journal Article
Exploring tissue architecture using spatial transcriptomics
2021
Deciphering the principles and mechanisms by which gene activity orchestrates complex cellular arrangements in multicellular organisms has far-reaching implications for research in the life sciences. Recent technological advances in next-generation sequencing- and imaging-based approaches have established the power of spatial transcriptomics to measure expression levels of all or most genes systematically throughout tissue space, and have been adopted to generate biological insights in neuroscience, development and plant biology as well as to investigate a range of disease contexts, including cancer. Similar to datasets made possible by genomic sequencing and population health surveys, the large-scale atlases generated by this technology lend themselves to exploratory data analysis for hypothesis generation. Here we review spatial transcriptomic technologies and describe the repertoire of operations available for paths of analysis of the resulting data. Spatial transcriptomics can also be deployed for hypothesis testing using experimental designs that compare time points or conditions—including genetic or environmental perturbations. Finally, spatial transcriptomic data are naturally amenable to integration with other data modalities, providing an expandable framework for insight into tissue organization.
This review describes the state of spatial transcriptomics technologies and analysis tools that are being used to generate biological insights in diverse areas of biology.
Journal Article
The promise and challenge of therapeutic genome editing
2020
Genome editing, which involves the precise manipulation of cellular DNA sequences to alter cell fates and organism traits, has the potential to both improve our understanding of human genetics and cure genetic disease. Here I discuss the scientific, technical and ethical aspects of using CRISPR (clustered regularly interspaced short palindromic repeats) technology for therapeutic applications in humans, focusing on specific examples that highlight both opportunities and challenges. Genome editing is—or will soon be—in the clinic for several diseases, with more applications under development. The rapid pace of the field demands active efforts to ensure that this breakthrough technology is used responsibly to treat, cure and prevent genetic disease.
The scientific, technical and ethical aspects of using CRISPR technology for therapeutic applications in humans are discussed, highlighting both opportunities and challenges of this technology to treat, cure and prevent genetic disease.
Journal Article
Structural cells are key regulators of organ-specific immune responses
2020
The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens
1
. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity
2
. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence
3
–
5
. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.
Structural cells implement a broad range of immune-regulatory functions beyond their roles as barriers and connective tissues, and they utilize an epigenetically encoded potential for immune gene activation in their rapid response to viral infection.
Journal Article