Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,641
result(s) for
"Organ Specificity - immunology"
Sort by:
An aged immune system drives senescence and ageing of solid organs
2021
Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly
1
,
2
. To define the contribution of immune system ageing to organism ageing, here we selectively deleted
Ercc1
, which encodes a crucial DNA repair protein
3
,
4
, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence
5
–
7
in the immune system only. We show that
Vav-iCre
+/−
;Ercc1
−/fl
mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice
8
–
10
. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from
Vav-iCre
+/−
;Ercc1
−/fl
or aged wild-type mice into young mice induced senescence
in
trans
, whereas the transplantation of young immune cells attenuated senescence. The treatment of
Vav-iCre
+/−
;Ercc1
−/fl
mice with rapamycin reduced markers of senescence in immune cells and improved immune function
11
,
12
. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.
An aged, senescent immune system has a causal role in driving systemic ageing, and the targeting of senescent immune cells with senolytic drugs has the potential to suppress morbidities associated with old age.
Journal Article
Structural cells are key regulators of organ-specific immune responses
2020
The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens
1
. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity
2
. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence
3
–
5
. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.
Structural cells implement a broad range of immune-regulatory functions beyond their roles as barriers and connective tissues, and they utilize an epigenetically encoded potential for immune gene activation in their rapid response to viral infection.
Journal Article
Diverse functional autoantibodies in patients with COVID-19
2021
COVID-19 manifests with a wide spectrum of clinical phenotypes that are characterized by exaggerated and misdirected host immune responses
1
–
6
. Although pathological innate immune activation is well-documented in severe disease
1
, the effect of autoantibodies on disease progression is less well-defined. Here we use a high-throughput autoantibody discovery technique known as rapid extracellular antigen profiling
7
to screen a cohort of 194 individuals infected with SARS-CoV-2, comprising 172 patients with COVID-19 and 22 healthcare workers with mild disease or asymptomatic infection, for autoantibodies against 2,770 extracellular and secreted proteins (members of the exoproteome). We found that patients with COVID-19 exhibit marked increases in autoantibody reactivities as compared to uninfected individuals, and show a high prevalence of autoantibodies against immunomodulatory proteins (including cytokines, chemokines, complement components and cell-surface proteins). We established that these autoantibodies perturb immune function and impair virological control by inhibiting immunoreceptor signalling and by altering peripheral immune cell composition, and found that mouse surrogates of these autoantibodies increase disease severity in a mouse model of SARS-CoV-2 infection. Our analysis of autoantibodies against tissue-associated antigens revealed associations with specific clinical characteristics. Our findings suggest a pathological role for exoproteome-directed autoantibodies in COVID-19, with diverse effects on immune functionality and associations with clinical outcomes.
Rapid extracellular antigen profiling of a cohort of 194 individuals infected with SARS-CoV-2 uncovers diverse autoantibody responses that affect COVID-19 disease severity, progression and clinical and immunological characteristics.
Journal Article
Temporal dynamics of the multi-omic response to endurance exercise training
2024
Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood
1
–
3
. Here, the Molecular Transducers of Physical Activity Consortium
4
profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female
Rattus norvegicus
over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository (
https://motrpac-data.org/
).
Temporal multi-omic analysis of tissues from rats undergoing up to eight weeks of endurance exercise training reveals widespread shared, tissue-specific and sex-specific changes, including immune, metabolic, stress response and mitochondrial pathways.
Journal Article
Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs
2015
Innate lymphoid cells (ILCs) contribute to barrier immunity, tissue homeostasis, and immune regulation at various anatomical sites throughout the body. How ILCs maintain their presence in lymphoid and peripheral tissues thus far has been unclear. We found that in the lymphoid and nonlymphoid organs of adult mice, ILCs are tissue-resident cells that were maintained and expanded locally under physiologic conditions, upon systemic perturbation of immune homeostasis and during acute helminth infection. However, at later time points after infection, cells from hematogenous sources helped to partially replenish the pool of resident ILCs. Thus, ILCs are maintained by self-renewal in broadly different microenvironments and physiological settings. Such an extreme \"sedentary\" lifestyle is consistent with the proposed roles of ILCs as sentinels and local keepers of tissue function.
Journal Article
Macrophage Polarization and Its Role in Liver Disease
by
Li, Yunxia
,
Ma, Cheng
,
Guo, Yuqin
in
acute liver injury
,
alcoholic liver disease
,
Angiogenesis
2021
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Journal Article
Environmental pollutants and the immune response
by
Hidaka, Takanori
,
Yamamoto, Masayuki
,
Suzuki, Takafumi
in
631/250/2502/248
,
692/420/256/2515
,
Animals
2020
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1–NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor–response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Exposure to environmental pollutants can lead to immune system dysfunction with severe pathological consequences. Yamamoto and colleagues review the impact of pollutants on immune function and describe potential means to ameliorate these effects.
Journal Article
Tissue-specific functions of invariant natural killer T cells
2018
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Journal Article
Tissue-resident macrophages
by
Jenkins, Stephen J
,
Davies, Luke C
,
Taylor, Philip R
in
631/250/2504/342
,
Animals
,
Biomedicine
2013
Macrophages populate tissues under homeostatic conditions. Taylor and colleagues discuss the heterogeneity of tissue macrophage populations, and how they contribute to tissue function and immune surveillance.
Tissue-resident macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These range from dedicated homeostatic functions, such as clearance of cellular debris and iron processing, to central roles in tissue immune surveillance, response to infection and the resolution of inflammation. Recent studies highlight marked heterogeneity in the origins of tissue macrophages that arise from hematopoietic versus self-renewing embryo-derived populations. We discuss the tissue niche-specific factors that dictate cell phenotype, the definition of which will allow new strategies to promote the restoration of tissue homeostasis. Understanding the mechanisms that dictate tissue macrophage heterogeneity should explain why simplified models of macrophage activation do not explain the extent of heterogeneity seen
in vivo
.
Journal Article
Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish
2020
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Journal Article