Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,642 result(s) for "Organic Anion Transporters"
Sort by:
Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotor-syndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.
Inhibitory Effects of Green Tea and (–)-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein
Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates.
Mechanistic Background and Clinical Applications of Indocyanine Green Fluorescence Imaging of Hepatocellular Carcinoma
Background Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. Methods In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). Results ICG fluorescence imaging enabled identification of 273 of 276 (99 %) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs ( P  < 0.001). Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na + /taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Conclusions Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.
Renal Drug Transporters and Drug Interactions
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug–drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate–inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Cyclosporine Inhibition of Hepatic and Intestinal CYP3A4, Uptake and Efflux Transporters: Application of PBPK Modeling in the Assessment of Drug-Drug Interaction Potential
Purpose To apply physiologically-based pharmacokinetic (PBPK) modeling to investigate the consequences of reduction in activity of hepatic and intestinal uptake and efflux transporters by cyclosporine and its metabolite AM1. Methods Inhibitory potencies of cyclosporine and AM1 against OATP1B1, OATP1B3 and OATP2B1 were investigated in HEK293 cells +/− pre-incubation. Cyclosporine PBPK model implemented in Matlab was used to assess interaction potential (+/− metabolite) against different processes (uptake, efflux and metabolism) in liver and intestine and to predict quantitatively drug-drug interaction with repaglinide. Results Cyclosporine and AM1 were potent inhibitors of OATP1B1 and OATP1B3, IC 50 ranging from 0.019–0.093 μM following pre-incubation. Cyclosporine PBPK model predicted the highest interaction potential against liver uptake transporters, with a maximal reduction of >70% in OATP1B1 activity; the effect on hepatic efflux and metabolism was minimal. In contrast, 80–97% of intestinal P-gp and CYP3A4 activity was reduced due to the 50-fold higher cyclosporine enterocytic concentrations relative to unbound hepatic inlet. The inclusion of AM1 resulted in a minor increase in the predicted maximal reduction of OATP1B1/1B3 activity. Good predictability of cyclosporine-repaglinide DDI and the impact of dose staggering are illustrated. Conclusions This study highlights the application of PBPK modeling for quantitative prediction of transporter-mediated DDIs with concomitant consideration of P450 inhibition.
Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization
Sodium taurocholate cotransporting polypeptide (NTCP) is a host cell receptor required for hepatitis B virus (HBV) entry. However, the susceptibility of NTCP-expressing cells to HBV is diverse depending on the culture condition. Stimulation with epidermal growth factor (EGF) was found to potentiate cell susceptibility to HBV infection. Here, we show that EGF receptor (EGFR) plays a critical role in HBV virion internalization. In EGFR-knockdown cells, HBV or its preS1-specific fluorescence peptide attached to the cell surface, but its internalization was attenuated. PreS1 internalization and HBV infection could be rescued by complementation with functional EGFR. Interestingly, the HBV/preS1–NTCP complex at the cell surface was internalized concomitant with the endocytotic relocalization of EGFR. Molecular interaction between NTCP and EGFR was documented by immunoprecipitation assay. Upon dissociation from functional EGFR, NTCP no longer functioned to support viral infection, as demonstrated by either (i) the introduction of NTCP pointmutation that disrupted its interaction with EGFR, (ii) the detrimental effect of decoy peptide interrupting the NTCP–EGFR interaction, or (iii) the pharmacological inactivation of EGFR. Together, these data support the crucial role of EGFR in mediating HBV–NTCP internalization into susceptible cells. EGFR thus provides a yet unidentified missing link from the cell-surface HBV–NTCP attachment to the viral invasion beyond the host cell membrane
Pharmacokinetics of a Three-Way Drug Interaction Between Danoprevir, Ritonavir and the Organic Anion Transporting Polypeptide (OATP) Inhibitor Ciclosporin
Background Danoprevir (RG7227) is a potent macrocyclic inhibitor of the hepatitis C virus NS3/4A protease, which is currently in development in combination with low-dose ritonavir for the treatment of chronic hepatitis C infection. Danoprevir is a substrate of cytochrome P450 3A4, and the organic anion transporting polypeptides (OATP) 1B1 and 1B3. Objective The objective of this study was to evaluate the effect of a potent OATP inhibitor, ciclosporin, on danoprevir pharmacokinetics, when administered as danoprevir/ritonavir. The effect of danoprevir/ritonavir on ciclosporin pharmacokinetics was also investigated. Methods This was a single-dose, randomized, open-label, two-sequence, three-period, crossover study in healthy volunteers. In the first period, subjects were randomized to receive either a single oral dose of danoprevir 100 mg in combination with ritonavir 100 mg or a single oral dose of ciclosporin 100 mg. After a 14-day washout, patients were crossed over to receive the opposite treatment. In period 3, all subjects received the combination of danoprevir/ritonavir and ciclosporin following a 14-day washout from period 2. Blood samples were collected serially with each dose for pharmacokinetic assessment. Pharmacokinetic parameters were estimated using non-compartmental analysis. Geometric mean ratios (GMRs) and 90 % confidence intervals (CIs) were used to compare pharmacokinetic parameters [maximum concentration ( C max ), area under the concentration–time curve from time zero to infinity (AUC ∞ ), and concentration 12 h post-dose ( C 12h )] of danoprevir/ritonavir and ciclosporin when administered alone or in combination. Measures of safety and tolerability were also evaluated. Results A total of 18 subjects were enrolled, and 17 completed the study. The C max , AUC ∞ , and C 12h GMRs (90 % CI) when danoprevir/ritonavir and ciclosporin were co-administered versus danoprevir/ritonavir or ciclosporin alone were 7.22 (5.42–9.62), 13.6 (11.2–16.6), and 22.5 (17.4–29.3), respectively, for danoprevir, 1.97 (1.72–2.27), 2.23 (2.07–2.42), and 2.50 (2.22–2.81), respectively, for ritonavir, and 1.42 (1.29–1.57), 3.65 (3.27–4.08), and 6.15 (5.32–7.11), respectively, for ciclosporin. All treatments were well tolerated, with no laboratory abnormalities, and no clinically significant changes in vital signs, electrocardiograms, or physical examinations observed. Conclusions A significant drug–drug interaction was observed between ciclosporin and danoprevir/ritonavir, leading to substantial increases in exposure to danoprevir and a lesser impact on exposure to ritonavir. Therefore, co-administration of danoprevir/ritonavir with potent OATP inhibitors should be undertaken with appropriate precautions.
Selectivity and Potency of Microcystin Congeners against OATP1B1 and OATP1B3 Expressing Cancer Cells
Microcystins are potent phosphatase inhibitors and cellular toxins. They require active transport by OATP1B1 and OATP1B3 transporters for uptake into human cells, and the high expression of these transporters in the liver accounts for their selective hepatic toxicity. Several human tumors have been shown to have high levels of expression of OATP1B3 but not OATP1B1, the main transporter in liver cells. We hypothesized that microcystin variants could be isolated that are transported preferentially by OATP1B3 relative to OATP1B1 to advance as anticancer agents with clinically tolerable hepatic toxicity. Microcystin variants have been isolated and tested for cytotoxicity in cancer cells stably transfected with OATP1B1 and OATP1B3 transporters. Microcystin variants with cytotoxic OATP1B1/OATP1B3 IC50 ratios that ranged between 0.2 and 32 were found, representing a 150-fold range in transporter selectivity. As microcystin structure has a significant impact on transporter selectivity, it is potentially possible to develop analogs with even more pronounced OATP1B3 selectivity and thus enable their development as anticancer drugs.
Mechanisms of urate transport and uricosuric drugs inhibition in human URAT1
High urate levels in circulation lead to the accumulation of urate crystals in joints and ultimately inflammation and gout. The reabsorption process of urate in the kidney by the urate transporter URAT1 plays a pivotal role in controlling serum urate levels. Pharmacological inhibition of URAT1 by uricosuric drugs is a valid strategy for gout management. Despite the clinical significance of URAT1, its structural mechanism and dynamics remain incompletely understood. Here, we report the structures of human URAT1 (hURAT1) in complex with substrate urate or inhibitors benzbromarone and verinurad at resolution ranges from 3.0 to 3.3 Å. We observe urate in the central substrate-binding site of hURAT1 in the outward-facing conformation and urate is wrapped in the center of hURAT1 by five phenylalanines and coordinated by two positively charged residues on each side. Uricosuric compounds benzbromarone and verinurad occupy the urate-binding site of hURAT1 in the inward-facing conformation. Structural comparison between different conformations of hURAT1 reveals the rocker-switch-like mechanism for urate transport. Benzbromarone and verinurad exert their inhibitory effect by blocking not only the binding of urate but also the structural isomerization of hURAT1. URAT1 reabsorbs urate in kidney and is a drug target for gout. Here, authors report the structures of human URAT1 in complex with substrate urate or inhibitors benzbromarone and verinurad to reveal the mechanism for urate transport and inhibition.