Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
131,885
result(s) for
"Organic Materials"
Sort by:
Effects of long-term application of organic materials on soil water extractable organic matter, fulvic acid, humic acid structure and microbial driving mechanisms
2024
Aims
Long-term application of organic materials has been shown to significantly enhance the content of soil organic matter (SOM), underscoring the critical need to examine the components of soil organic carbon for a deeper understanding of SOM functionalities. Thus, the structural changes and microbial driving mechanisms of water extractable organic matter (WEOM), fulvic acid (FA) and humic acid (HA) were investigated in black soil by a long-term fertilization experiment.
Methods
This 33-year experiment comprises five treatments: no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer with low-rate straw (NPKJ1), chemical fertilizer with high-rate straw (NPKJ2), and chemical fertilizer with organic manure (NPKM). We also conducted a detailed study of WEOM, FA, HA, and the microbial community structure in both the 0–20 cm and 20–40 cm soil layers.
Results
Our findings indicate that organic material application primarily sourced WEOM, FA, and HA from microbial metabolism and plant-derived origins, exhibiting humus and aromatization characteristics with high molecular weight. WEOM was rich in fulvic acid-like and humic acid-like compounds, while FA and HA contained more protein-like components. Organic material use altered WEOM, FA, and HA structures by impacting soil microbial biomass carbon (MBC) and fungal/bacterial biomass. In 0–20 cm soil layer, SOM content was mainly influenced by humus, especially the HA fraction, whereas in 20–40 cm soil layer, it was predominantly affected by WEOM.
Conclusions
The present study emphasizes that the application of organic materials can influence the structure of microbial communities, thereby affecting the composition of WEOM, FA, and HA, consequently influencing the organic matter content in different soil layers.
Journal Article
p‐Type Redox‐Active Organic Electrode Materials for Next‐Generation Rechargeable Batteries
by
Kang, Yeongkwon
,
Kwon, Ji Eon
,
Jang, Deogjin
in
Batteries
,
Electric potential
,
Electrochemical analysis
2022
p‐Type redox‐active organic materials (ROMs) draw increasing attention as a promising alternative to conventional inorganic electrode materials in secondary batteries due to high redox voltage, fast rate capability, environment friendliness, and abundance. First, fundamental properties of the p‐type ROMs regarding the energy levels and the anion‐related chemistry are briefly introduced. Then, the development progress of the p‐type ROMs is outlined in this review by classifying them according to their redox centers. The molecular design strategies employed for improving their electrochemical performance are discussed to guide further research. Finally, a summary of the electrochemical performance achieved, regarding voltage, specific energy with power, and cycle stability, is provided with perspectives. Herein, p‐type redox‐active organic materials (ROMs) are focused on for high‐performance rechargeable batteries. Herein this review, the basic properties of p‐type ROMs are systematically discussed by presenting representative structures, their challenges, and future prospects. To design outperforming p‐type ROMs, the electrochemical properties, such as redox chemistry, energy levels, and intercalated counter anions, are considered comprehensively.
Journal Article
Materials and devices for flexible and stretchable photodetectors and light-emitting diodes
by
Yoo, Seungwon
,
Kim, Dae-Hyeong
,
Song, Jun-Kyul
in
Atomic/Molecular Structure and Spectra
,
Bending machines
,
Biomedicine
2021
Recently, significant efforts have been directed at overcoming the limitations of conventional rigid optoelectronic devices, particularly their poor mechanical stability under bending, folding, and stretching deformations. One of major approaches for rendering optoelectronic devices mechanically deformable is to replace the conventional electronic/optoelectronic materials with functional nanomaterials or organic materials that are intrinsically flexible/stretchable. Further, advanced device designs and unconventional fabrication methods have also contributed to the development of soft optoelectronic devices. Accordingly, new devices such as bio-inspired curved image sensors, wearable light emitting devices, and deformable bio-integrated optoelectronic devices have been developed. In this review, recent progress in the development of soft optoelectronic materials and devices is outlined. First, various materials such as nanomaterials, organic materials, and their hybrids that are suitable for developing deformable photodetectors, are presented. Then, the nanomaterials and organic/polymeric materials that are applicable in deformable light-emitting diodes are described. Finally, representative system-level applications of flexible and stretchable photodetectors and light-emitting diodes are reviewed, and future prospects are discussed.
Journal Article
Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater
2022
In this work, we have explored a novel application of one–dimensional (1D) photonic crystals (PCs) as a biomarker for the detection of organic materials in wastewater. The high concentration of organic materials may lead to adverse impact on human life. In order to save human life from these adverse effects, we have investigated the bio-alcohol sensing properties of a 1D multilayer periodic structure (AB)N/C/(AB)N capable of detecting organic materials in wastewater. The proposed structure works on the principle to detect a very small change in the refractive index of the wastewater sample under investigation by means of producing a shift in the position of the defect mode inside the photonic band gap (PBG) of the proposed structure. The transfer matrix method (TMM) has been used to investigate the transmission properties of the proposed design with the help of MATLAB software. We have also studied the effect of changes in the defect layer’s thickness, the volume fraction of the nanocomposite material and the incident angle on the sensitivity of our proposed bio-alcohol sensing design. Our bio-alcohol sensor shows a high sensitivity value of 500 nm/RIU and a low detection limit value of 1 × 10−5 RIU. The figure of merit and quality factor values of our bio-alcohol sensor are 5 × 103 and 5.236 × 103, respectively. The damping rate of the design is ξ=95.4927×10−5.
Journal Article
Organic materials‐based cathode for zinc ion battery
by
Huang, Zhaodong
,
Zhi, Chunyi
,
Ma, Longtao
in
Alternative energy sources
,
aqueous electrolyte batteries
,
Carbonyl compounds
2022
The quest for advanced energy storage devices with cheaper, safer, more resource‐abundant storage has triggered intense research into zinc ion batteries (ZIBs). Among them, organic materials as cathode materials for ZIBs have attracted great interest due to their flexible structure designability, high theoretical capacity, environmental friendliness, and sustainability. Although numerous organic electrode materials have been studied and different redox mechanisms have been proposed in the past decade, their electrochemical performance still needs further improvement, and the mechanisms require further exploration. This paper provides a systematical overview of three types of organic materials (bipolar‐type conductive polymer, n‐type conjugated carbonyl compounds, and p‐type material) on the energy storage mechanisms and distinct characteristics. We then focus on discussing the design strategies to improve electrochemical performance. Furthermore, the challenges and future research directions are discussed to provide a foundation for further developing organic‐based ZIBs. As cathode materials for zinc‐ion batteries, organic materials have attracted great interests due to their flexible structure designability, high theoretical capacity, environmental friendliness, and sustainability. A systematical overview of three types of organic materials is presented to summarize their structures and performances, propose the strategies for their performance enhancement, expound the current challenges and perspectives.
Journal Article
Sunlike White Light-Emitting Diodes Based on Rare-Earth-Free Luminescent Materials
by
Menéndez-Velázquez, Amador
,
García-Delgado, Ana Belén
,
Morales, Dolores
in
Color
,
Converters
,
Coumarin
2022
Solid-state lighting (SSL) sources based on light-emitting diodes represent the new generation of highly efficient illumination systems that significantly impact energy-saving. The development of white light-emitting diodes (WLEDs) with a combination of high color rendering index (CRI) and high deep-red color rendering R9 is an important challenge in the field of solid-state lighting. On the other hand, most WLEDs use rare-earth inorganic luminescent materials. The annual demand for rare-earth metals has doubled to 125,000 tons in 15 years, and the demand is projected to reach 315,000 tons in 2030. The explosion in demand for these materials, combined with a monopolistic supply source, represents a real risk for the development of WLEDs in the next few years. Luminescent organic materials are a relevant and promising alternative. Here, we report a WLED with a very high CRI of 95.7 and R9 of 78.7, obtained using a combination of a blue LED chip (excitation source) and two organic luminescent dyes (Coumarin 6 and Lumogen Red) acting as spectral converters in a multilayer remote phosphor configuration. To the best of our knowledge, this is the first rare-earth-free WLED with such high values of CRI and R9.
Journal Article
Progressive Trends in Hybrid Material-Based Chemiresistive Sensors for Nitroaromatic Compounds
by
Sharma, Ritika
,
Sundarrajan, Subramanian
,
Ramakrishna, Seeram
in
Carbon
,
Chemical bonds
,
Chemistry
2022
In the last decades, development of hybrid materials, especially inorganic–organic materials, coordination polymers, conducting polymers, carbon materials, and many more, has produced breakthroughs in diverse applications. Various advance materials have been reported in the literature using metal organic frameworks (MOFs), which compensate for the limitations of sensors. Diverse combinations of HMs not only offer excellent features, but also give a ray of hope for unprecedented advances in materials in different research areas, such as sensing, energy storage, catalysis, non-linear optics, drug-delivery systems, gas storage, etc. Chemiresistor sensors are a core enabling sensor technology and have led to much progress in the field of material science. Here, we have reviewed the recent progress in chemiresistive sensors based on HMs for nitroaromatic compounds, which could be beneficial for researchers that explore this field further. We have put emphasis on sensing mechanisms and the performance of diverse HMs for nitroaromatic sensing applications including pesticides, pollutants, explosives, polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants (POPs). In the end, we explored opportunities, challenges, and future perspectives in this emerging field.
Journal Article
Designing Organic Material Electrodes for Lithium-Ion Batteries: Progress, Challenges, and Perspectives
2024
Organic material electrodes are regarded as promising candidates for next-generation rechargeable batteries due to their environmentally friendliness, low price, structure diversity, and flexible molecular structure design. However, limited reversible capacity, high solubility in the liquid organic electrolyte, low intrinsic ionic/electronic conductivity, and low output voltage are the main problems they face. A lot of research work has been carried out to explore comprehensive solutions to the above problems through molecular structure design, the introduction of specific functional groups and specific molecular frameworks, from small molecules to polymer molecules, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and heterocyclic molecules; from simple organic materials to organic composites; from single functional groups to multi-functional groups; etc. The inevitable relationship between various molecular structure design and enhanced electrochemical properties has been illustrated in detail. This work also specifically discusses several approaches for the current application of organic compounds in batteries, including interfacial protective layer of inorganic metal oxide cathode, anode (metal lithium or silicon) and solid-state electrolyte, and host materials of sulfur cathode and redox media in lithium-sulfur batteries. This overview provides insight into a deep understanding of the molecular structure of organic electrode materials (OEMs) and electrochemical properties, broadens people’s research ideas, and inspires researchers to explore the advanced application of electroactive organic compounds in rechargeable batteries.
Graphical Abstract
Journal Article
Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
by
Leigh, Joanne
,
Hodge, Angela
,
Fitter, Alastair H.
in
arbuscular mycorrhizal (AM) fungi
,
Fungi
,
Glomeromycota
2009
Nitrogen (N) capture by arbuscular mycorrhizal (AM) fungi from organic material is a recently discovered phenomenon. This study investigated the ability of two Glomus species to transfer N from organic material to host plants and examined whether the ability to capture N is related to fungal hyphal growth. Experimental microcosms had two compartments; these contained either a single plant of Plantago lanceolata inoculated with Glomus hoi or Glomus intraradices, or a patch of dried shoot material labelled with ¹⁵N and ¹³carbon (C). In one treatment, hyphae, but not roots, were allowed access to the patch; in the other treatment, access by both hyphae and roots was prevented. When allowed, fungi proliferated in the patch and captured N but not C, although G. intraradices transferred more N than G. hoi to the plant. Plants colonized with G. intraradices had a higher concentration of N than controls. Up to one-third of the patch N was captured by the AM fungi and transferred to the plant, while c. 20% of plant N may have been patch derived. These findings indicate that uptake from organic N could be important in AM symbiosis for both plant and fungal partners and that some AM fungi may acquire inorganic N from organic sources.
Journal Article
Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications
by
Capodilupo, Agostina Lina
,
Cardone, Antonio
in
Alternative energy sources
,
Chemical synthesis
,
Energy storage
2022
The continuous increase in the global energy demand deeply impacts the environment. Consequently, the research is moving towards more sustainable forms of energy production, storage and saving. Suitable technologies and materials are fundamental to win the challenge towards a greener and more eco-friendly society. Organic π-conjugated materials, including small molecules, oligomers and polymers are a wide and versatile class of functional materials with great potentiality, as they can be used as active matrixes in the fabrication of lightweight, flexible, cheap and large area devices. Their chemical and physical properties, both at a molecular level and mainly in the solid state, are a result of many factors, strictly related to the conjugated structure and functional groups on the backbone, which control the intermolecular forces driving solid state aggregations. The synthesis, through the molecular design, the choice of conjugated backbone and functionalization, represents the first and most powerful tool for finely tuning the chemico-physical properties of organic materials tailored for specific applications. In the present review, we report an overview of our works focused on synthetic methodologies, characterization, structure-properties correlation studies and applications of organic materials designed for energy-involving solid-state applications, organic photovoltaics in particular. The impact of functionalization on electro-optical properties and performance in device are discussed, also in relation to the specific applications.
Journal Article