Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,354
result(s) for
"Organogenesis - physiology"
Sort by:
Mechanical forces direct stem cell behaviour in development and regeneration
2017
Key Points
Stem cells are regulated by cell-intrinsic and cell-extrinsic forces in development, homeostasis and regeneration.
Mechanical tension regulates early embryogenesis
ex vivo
in embryoid self-organization, germ-band elongation, invagination and dorsal closure, and sorting of the germ layers.
During development, mechanical forces regulate the generation of organ systems by directing the specification and expansion of stem cells, as well as re-organizing the extracellular matrix that begins to accumulate in embryonic tissues.
Synthetic matrices enable the control of biophysical properties of the stem cell niche in order to test specific hypotheses on how mechanical cues regulate stem cells.
Synthetic matrices have been used to demonstrate how mechanical cues, such as stiffness and viscoelasticity, as well as externally applied mechanical loads, control stem cell self-renewal and proliferation, differentiation and organoid formation.
Externally applied mechanical forces can stimulate stem cells to promote tissue regeneration.
Physical cues regulate stem cell fate and function during embryonic development and in adult tissues. The biophysical and biochemical properties of the stem cell microenvironment can be precisely manipulated using synthetic niches, which provide key insights into how mechanical stimuli regulate stem cell function and can be used to maintain and guide stem cells for regenerative therapies.
Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency.
In vitro
, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
Journal Article
Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin
by
Kumar, Sanjay
,
Rodrigues, Alan R.
,
Shyer, Amy E.
in
Animals
,
beta Catenin - metabolism
,
Birds
2017
The spacing of hair in mammals and feathers in birds is one of the most apparent morphological features of the skin. This pattern arises when uniform fields of progenitor cells diversify their molecular fate while adopting higher-order structure. Using the nascent skin of the developing chicken embryo as a model system, we find that morphological and molecular symmetries are simultaneously broken by an emergent process of cellular self-organization. The key initiators of heterogeneity are dermal progenitors, which spontaneously aggregate through contractility-driven cellular pulling. Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of β-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken together, this mechanism provides a means of integrating mechanical and molecular perspectives of organ formation.
Journal Article
Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex
by
Kadoshima, Taisuke
,
Sakaguchi, Hideya
,
Soen, Mika
in
Amides
,
Biological and medical sciences
,
Biological Sciences
2013
Here, using further optimized 3D culture that allows highly selective induction and long-term growth of human ES cell (hESC)-derived cortical neuroepithelium, we demonstrate unique aspects of self-organization in human neocorticogenesis. Self-organized cortical tissue spontaneously forms a polarity along the dorsocaudal-ventrorostral axis and undergoes region-specific rolling morphogenesis that generates a semispherical structure. The neuroepithelium self-forms a multilayered structure including three neuronal zones (subplate, cortical plate, and Cajal-Retzius cell zones) and three progenitor zones (ventricular, subventricular, and intermediate zones) in the same apical-basal order as seen in the human fetal cortex in the early second trimester. In the cortical plate, late-born neurons tend to localize more basally to early-born neurons, consistent with the inside-out pattern seen in vivo. Furthermore, the outer subventricular zone contains basal progenitors that share characteristics with outer radial glia abundantly found in the human, but not mouse, fetal brain. Thus, human neocorticogenesis involves intrinsic programs that enable the emergence of complex neocortical features.
Journal Article
Generation of the organotypic kidney structure by integrating pluripotent stem cell-derived renal stroma
2022
Organs consist of the parenchyma and stroma, the latter of which coordinates the generation of organotypic structures. Despite recent advances in organoid technology, induction of organ-specific stroma and recapitulation of complex organ configurations from pluripotent stem cells (PSCs) have remained challenging. By elucidating the in vivo molecular features of the renal stromal lineage at a single-cell resolution level, we herein establish an in vitro induction protocol for stromal progenitors (SPs) from mouse PSCs. When the induced SPs are assembled with two differentially induced parenchymal progenitors (nephron progenitors and ureteric buds), the completely PSC-derived organoids reproduce the complex kidney structure, with multiple types of stromal cells distributed along differentiating nephrons and branching ureteric buds. Thus, integration of PSC-derived lineage-specific stroma into parenchymal organoids will pave the way toward recapitulation of the organotypic architecture and functions.
Organs consist of parenchyma and stroma. Nishinakamura and colleagues induce renal stromal progenitors from mouse pluripotent stem cells (PSCs), and generate completely PSC-derived organoids that reproduce complex kidney structure.
Journal Article
Functional consequences of developmentally regulated alternative splicing
2011
Key Points
A large fraction of genes in worms, flies and vertebrates express multiple mRNAs by alternative splicing. This produces extensive mRNA structural diversity that ultimately affects protein coding potential as well as mRNA
cis
-acting elements that are determinative for translation, mRNA stability and mRNA intracellular localization.
Global analyses of alternative splicing regulation during periods of biological transition, such as during development, have revealed coordinated and conserved networks of alternative splicing.
Several splicing regulatory networks controlled by individual RNA-binding proteins have been identified by combining recent advances in genome-wide analyses of alternative splicing with the identification of RNA binding sites
in vivo
.
A high proportion of RNA-binding proteins that regulate alternative splicing are themselves regulated by alternative splicing and are subject to auto- and crossregulatory feedback. This type of regulation includes alternative splicing linked with nonsense-mediated decay (AS–NMD), which results in mRNA downregulation.
Diverse physiological processes are regulated in a determinative fashion by alternative splicing patterns, including meiosis in budding yeast, neuronal arborization in the
Drosophila melanogaster
brain, and stem cell determination in vertebrates.
The regulation of gene expression by alternative splicing is intricately linked with transcription, the epigenetic state of chromatin, and subsequent RNA processing events, such as 3′ end formation, mRNA export and mRNA translation efficiency.
Recent transcriptomics studies have revealed extensive mRNA diversity generated by alternative splicing. An emerging theme is the existence of regulatory networks through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, involving robust and coordinated alternative splicing transitions.
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Journal Article
Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells
2017
Human pluripotent stem cells are differentiated into inner ear organoids containing cells similar to hair cells and sensory neurons.
The derivation of human inner ear tissue from pluripotent stem cells would enable
in vitro
screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR–Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.
Journal Article
MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration
2022
Damage to organs by trauma, infection, diseases, congenital defects, aging, and other injuries causes organ malfunction and is life-threatening under serious conditions. Some of the lower order vertebrates such as zebrafish, salamanders, and chicks possess superior organ regenerative capacity over mammals. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), as key members of the mitogen-activated protein kinase (MAPK) family, are serine/threonine protein kinases that are phylogenetically conserved among vertebrate taxa. MAPK/ERK signaling is an irreplaceable player participating in diverse biological activities through phosphorylating a broad variety of substrates in the cytoplasm as well as inside the nucleus. Current evidence supports a central role of the MAPK/ERK pathway during organ regeneration processes. MAPK/ERK signaling is rapidly excited in response to injury stimuli and coordinates essential pro-regenerative cellular events including cell survival, cell fate turnover, migration, proliferation, growth, and transcriptional and translational activities. In this literature review, we recapitulated the multifaceted MAPK/ERK signaling regulations, its dynamic spatio-temporal activities, and the profound roles during multiple organ regeneration, including appendages, heart, liver, eye, and peripheral/central nervous system, illuminating the possibility of MAPK/ERK signaling as a critical mechanism underlying the vastly differential regenerative capacities among vertebrate species, as well as its potential applications in tissue engineering and regenerative medicine.
Journal Article
Live imaging of alveologenesis in precision-cut lung slices reveals dynamic epithelial cell behaviour
2019
Damage to alveoli, the gas-exchanging region of the lungs, is a component of many chronic and acute lung diseases. In addition, insufficient generation of alveoli results in bronchopulmonary dysplasia, a disease of prematurity. Therefore visualising the process of alveolar development (alveologenesis) is critical for our understanding of lung homeostasis and for the development of treatments to repair and regenerate lung tissue. Here we show live alveologenesis, using long-term, time-lapse imaging of precision-cut lung slices. We reveal that during this process, epithelial cells are highly mobile and we identify specific cell behaviours that contribute to alveologenesis: cell clustering, hollowing and cell extension. Using the cytoskeleton inhibitors blebbistatin and cytochalasin D, we show that cell migration is a key driver of alveologenesis. This study reveals important novel information about lung biology and provides a new system in which to manipulate alveologenesis genetically and pharmacologically.
The process of alveologenesis is incompletely understood, partly due to the lack of applicable real-time imaging methods. Here the authors describe the process of alveologenesis and the behaviour of epithelial cells in real-time, using widefield microscopy and image deconvolution in precision-cut lung slices, revealing the dominant role of epithelial cell migration.
Journal Article
Osteocalcin in the brain: from embryonic development to age-related decline in cognition
2018
A remarkable, unexpected aspect of the bone-derived hormone osteocalcin is that it is necessary for both brain development and brain function in the mouse, as its absence results in a profound deficit in spatial learning and memory and an exacerbation of anxiety-like behaviour. The regulation of cognitive function by osteocalcin, together with the fact that its circulating levels decrease in midlife compared with adolescence in all species tested, raised the prospect that osteocalcin might be an anti-geronic hormone that could prevent age-related cognitive decline. As presented in this Review, recent data indicate that this is indeed the case and that osteocalcin is necessary for the anti-geronic activity recently ascribed to the plasma of young wild-type mice. The diversity and amplitude of the functions of osteocalcin in the brain, during development and postnatally, had long called for the identification of its receptor in the brain, which was also recently achieved. This Review presents our current understanding of the biology of osteocalcin in the brain, highlighting the bony vertebrate specificity of the regulation of cognitive function and pointing toward where therapeutic opportunities might exist.
Journal Article
Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors
2021
Current kidney organoids model development and diseases of the nephron but not the contiguous epithelial network of the kidney’s collecting duct (CD) system. Here, we report the generation of an expandable, 3D branching ureteric bud (UB) organoid culture model that can be derived from primary UB progenitors from mouse and human fetal kidneys, or generated de novo from human pluripotent stem cells. In chemically-defined culture conditions, UB organoids generate CD organoids, with differentiated principal and intercalated cells adopting spatial assemblies reflective of the adult kidney’s collecting system. Aggregating 3D-cultured nephron progenitor cells with UB organoids in vitro results in a reiterative process of branching morphogenesis and nephron induction, similar to kidney development. Applying an efficient gene editing strategy to remove RET activity, we demonstrate genetically modified UB organoids can model congenital anomalies of kidney and urinary tract. Taken together, these platforms will facilitate an enhanced understanding of development, regeneration and diseases of the mammalian collecting duct system.
Here, the authors model the collecting duct system in kidneys by taking ureteric bud (UB) progenitor cells from both mouse and human primary tissues, as well as from hESC and hiPSC to generate organoids, which can model congenital anomalies of the kidney and urinary tract.
Journal Article