Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
295 result(s) for "Origin Recognition Complex - genetics"
Sort by:
Establishment and function of chromatin organization at replication origins
The origin recognition complex (ORC) is essential for initiation of eukaryotic chromosome replication as it loads the replicative helicase—the minichromosome maintenance (MCM) complex—at replication origins 1 . Replication origins display a stereotypic nucleosome organization with nucleosome depletion at ORC-binding sites and flanking arrays of regularly spaced nucleosomes 2 – 4 . However, how this nucleosome organization is established and whether this organization is required for replication remain unknown. Here, using genome-scale biochemical reconstitution with approximately 300 replication origins, we screened 17 purified chromatin factors from budding yeast and found that the ORC established nucleosome depletion over replication origins and flanking nucleosome arrays by orchestrating the chromatin remodellers INO80, ISW1a, ISW2 and Chd1. The functional importance of the nucleosome-organizing activity of the ORC was demonstrated by orc1 mutations that maintained classical MCM-loader activity but abrogated the array-generation activity of ORC. These mutations impaired replication through chromatin in vitro and were lethal in vivo. Our results establish that ORC, in addition to its canonical role as the MCM loader, has a second crucial function as a master regulator of nucleosome organization at the replication origin, a crucial prerequisite for efficient chromosome replication. Genome-scale in vitro reconstitution of DNA replication through chromatin establishes a crucial role for the origin recognition complex in organizing nucleosome arrays that are crucial for the initiation of replication.
DNA replication origins retain mobile licensing proteins
DNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase. Although the outline of replisome assembly is understood, little is known about the dynamics of individual proteins on DNA and how these contribute to proper complex formation. Here we show, using single-molecule optical trapping and confocal microscopy, that yeast ORC is a mobile protein that diffuses rapidly along DNA. Origin recognition halts this search process. Recruitment of MCM molecules in an ORC- and Cdc6-dependent fashion results in slow-moving ORC-MCM intermediates and MCMs that rapidly scan the DNA. Following ATP hydrolysis, salt-stable loading of MCM single and double hexamers was seen, both of which exhibit salt-dependent mobility. Our results demonstrate that effective helicase loading relies on an interplay between protein diffusion and origin recognition, and suggest that MCM is stably loaded onto DNA in multiple forms. Eukaryotic DNA replication is regulated to ensure copying of the genome (only) once per cell cycle. Here the authors, using optical trapping and confocal microscopy, demonstrate the dynamics of the origin recognition complex and subsequent intermediates that lead up to the loading of an MCM helicase onto DNA.
Transcription shapes DNA replication initiation to preserve genome integrity
Background Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. Results We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. Conclusion RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier–Gorlin syndrome
The ORC1 BAH domain is shown to be a module that recognizes a histone modification associated with replication origins, providing insight into the aetiology of Meier–Gorlin syndrome. Histone methylation linked to DNA replication ORC1 is a subunit of the replication-licensing machinery that associates with replication origins, and mutations in the ORC1 BAH domain have been associated with a dwarfism syndrome. Here, the ORC1 BAH domain is shown to comprise a module that recognizes a histone modification associated with replication origins. Insight into the molecular basis of the interaction is provided by a crystal structure. The interaction between ORC1 BAH domain and the histone modification is required for loading of ORC onto chromatin, and is also required to prevent dwarfism in a zebrafish model of the disease. The recognition of distinctly modified histones by specialized ‘effector’ proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes 1 . Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1—a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing 2 —contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier–Gorlin syndrome (MGS) 3 , 4 , a form of primordial dwarfism 5 , and ORC1 depletion in zebrafish results in an MGS-like phenotype 4 . We find that wild-type human ORC1, but not ORC1–H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.
Nucleosome-directed replication origin licensing independent of a consensus DNA sequence
The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes. Most eukaryotes do not use a consensus DNA sequence as binding sites for the origin recognition complex (ORC) to initiate DNA replication, however budding yeast do. Here the authors show S. cerevisiae ORC can bind nucleosomes near nucleosome-free regions and recruit replicative helicases to form a pre-replication complex independent of the DNA sequence.
Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6
Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2–7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC’s ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2–7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2–7 loading site selection in metazoans. The origin recognition complex (ORC) is essential for loading the Mcm2–7 replicative helicase onto DNA during DNA replication initiation. Here, the authors describe several cryo-electron microscopy structures of Drosophila ORC bound to DNA and its cofactor Cdc6 and also report an in vitro reconstitution system for Drosophila Mcm2–7 loading, revealing unexpected features of ORC’s DNA binding and remodeling mechanism during Mcm2–7 loading.
MCM2-7 ring closure involves the Mcm5 C-terminus and triggers Mcm4 ATP hydrolysis
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled. A cryo-EM structure of an ORC-Cdc6-Cdt1-MCM2-7 intermediate shows a remodelled, fully-closed Mcm2/Mcm5 interface. The Mcm5 C-terminus (C5) contacts Orc3 and specifically recognises this closed ring. Interestingly, we found that normal helicase loading triggers Mcm4 ATP-hydrolysis, which in turn leads to reorganisation of the MCM2-7 complex and Cdt1 release. However, defective MCM2-7 ring closure, due to mutations at the Mcm2/Mcm5 interface, leads to MCM2-7 ring splitting and complex disassembly. As such we identify Mcm4 as the key ATPase in regulating pre-RC formation. Crucially, a stable Mcm2/Mcm5 interface is essential for productive ATP-hydrolysis-dependent remodelling of the helicase. The loading of the replicative helicase is vital for replication fork assembly. Here the authors identify Mcm4 as the key ATPase in this process and show that helicase ring closure around DNA promotes Mcm4 ATPase dependent Cdt1 release, while defective ring closure leads to complex disassembly.
Replication licensing regulated by a short linear motif within an intrinsically disordered region of origin recognition complex
In eukaryotes, the origin recognition complex (ORC) faciliates the assembly of pre-replicative complex (pre-RC) at origin DNA for replication licensing. Here we show that the N-terminal intrinsically disordered region (IDR) of the yeast Orc2 subunit is crucial for this process. Removing a segment (residues 176-200) from Orc2-IDR or mutating a key isoleucine (194) significantly inhibits replication initiation across the genome. These Orc2-IDR mutants are capable of assembling the ORC-Cdc6-Cdt1-Mcm2-7 intermediate, which exhibits impaired ATP hydrolysis and fails to be convered into the subsequent Mcm2-7-ORC complex and pre-RC. These defects can be partially rescued by the Orc2-IDR peptide. Moreover, the phosphorylation of this Orc2-IDR region by S cyclin-dependent kinase blocks its binding to Mcm2-7 complex, causing a defective pre-RC assembly. Our findings provide important insights into the multifaceted roles of ORC in supporting origin licensing during the G1 phase and its regulation to restrict origin firing within the S phase. In eukaryotes, the origin recognition complex (ORC) is essential for replication licensing. Here, the authors report that a short motif within the intrinsically disordered region of the yeast Orc2 subunit plays an important role in regulating the licensing process.
MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome. Correct loading of the MCM2-7 helicase is crucial for DNA replication and cell cycle progression. Here, the authors used high-resolution genomics to demonstrate how ORC is displaced from origins, which serves as a mechanism for distributive MCM loading onto DNA.
Unidirectional MCM translocation away from ORC drives origin licensing
The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown. Here, we used cryo-EM to characterise helicase loading with ATPase-dead Arginine Finger variants of the six MCM subunits. We report the structure of two MCM complexes with different DNA grips, stalled as they mature to loaded MCM. The Mcm2 Arginine Finger-variant stabilises DNA binding by Mcm2 away from ORC/Cdc6. The Arginine Finger-variant of the neighbouring Mcm5 subunit stabilises DNA engagement by Mcm5 downstream of the Mcm2 binding site. Cdc6 and Orc1 progressively disengage from ORC as MCM translocates along DNA. We observe that duplex DNA translocation by MCM involves a set of leading-strand contacts by the pre-sensor 1 ATPase hairpins and lagging-strand contacts by the helix-2-insert hairpins. Mutating any of the MCM residues involved impairs high-salt resistant DNA binding in vitro and double-hexamer formation assessed by electron microscopy. Thus, ATPase-powered duplex DNA translocation away from ORC underlies MCM loading. When the MCM motor of the replicative helicase becomes loaded onto chromatin, origin DNA is licensed for replication. Here, the authors show why the ATPase function of MCM is needed in this process. Powered by ATP hydrolysis, MCM steps away from its own loader, tracking along both DNA strands.