Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
426,719
result(s) for
"Original Paper"
Sort by:
Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice
by
Johnson, Kurt O.
,
Tchkonia, Tamar
,
Neretti, Nicola
in
Age Factors
,
Aging
,
Alzheimer's disease
2021
Cellular senescence is characterized by an irreversible cell cycle arrest and a pro‐inflammatory senescence‐associated secretory phenotype (SASP), which is a major contributor to aging and age‐related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single‐nuclei and single‐cell RNA‐seq in the hippocampus from young and aged mice. We observed an age‐dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK‐ATTAC mice, in which p16Ink4a‐positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof‐of‐concept for senolytic interventions' being a potential therapeutic avenue for alleviating age‐associated cognitive impairment.
Senescence is a major contributor to aging and age‐related diseases. However, it is still unknown whether senolytics impact on cognitive function during the aging process. We found that both pharmacogenetic clearance of p16Ink4a senescent cells or treatment with senolytic cocktail Dasatinib and Quercetin, reduced senescent microglia in the hippocampus and improved cognitive function in aged mice.
Journal Article
Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells
2015
Tunneling nanotubes (TNTs) are F-actin-based membrane tubes that form between cells in culture and in tissues. They mediate intercellular communication ranging from electrical signalling to the transfer of organelles. Here, we studied the role of TNTs in the interaction between apoptotic and healthy cells. We found that pheochromocytoma (PC) 12 cells treated with ultraviolet light (UV) were rescued when cocultured with untreated PC12 cells. UV-treated cells formed a different type of TNT with untreated PC12 cells, which was characterized by continuous microtubule localized inside these TNTs. The dynamic behaviour of mCherry-tagged end-binding protein 3 and the accumulation of detyrosinated tubulin in these TNTs indicate that they are regulated structures. In addition, these TNTs show different biophysical properties, for example, increased diameter allowing dye entry, prolonged lifetime and decreased membrane fluidity. Further studies demonstrated that microtubule-containing TNTs were formed by stressed cells, which had lost cytochrome
c
but did not enter into the execution phase of apoptosis characterized by caspase-3 activation. Moreover, mitochondria colocalized with microtubules in TNTs and transited along these structures from healthy to stressed cells. Importantly, impaired formation of TNTs and untreated cells carrying defective mitochondria were unable to rescue UV-treated cells in the coculture. We conclude that TNT-mediated transfer of functional mitochondria reverse stressed cells in the early stages of apoptosis. This provides new insights into the survival mechanisms of damaged cells in a multicellular context.
Journal Article
The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer
2017
EZH2 (the Enhancer of Zeste Homolog 2), as a key epigenetic regulator and EMT inducer, participates in a variety of cancer metastasis. EZH2 stability is regulated by several types of post-translational modifications (PTMs).The long non-coding RNAs (lncRNA) have been implicated to have critical roles in multiple carcinogenesis through a wide range of mechanisms, including modulating the stability of proteins. To date, whether the stability of EZH2 protein is regulated by lncRNAs remains unexplored. Here we report the discovery of ANCR modulating the stability of EZH2, and hence in the invasion and metastasis of breast cancer cells. We determined that ANCR potentiated the CDK1-EZH2 interaction, which then increased the intensity of phosphorylation at Thr-345 and Thr-487 sites of EZH2, facilitating EZH2 ubiquitination and hence its degradation. Moreover, we also uncover ANCR is an important player in breast cancer progression and metastasis mainly through decreasing EZH2 stability. More specifically, we initially found that ANCR level was lower in breast cancer tissues and breast cancer cell lines, in contrast to their normal counterparts. We then demonstrated that knockdown of ANCR induced an EMT program and promoted cell migration and invasion in MCF10A (epithelial cells), whereas ectopic expression of ANCR repressed breast cancer cells migration and invasion. Furthermore, we validated in a nude mouse model that overexpression of ANCR in highly malignant and invasive MDA-MB-231 breast cancer cells significantly reduced the ability of the cells to form tumors and prevented the lung metastasis
in vivo
. Based on these data, our findings define a new mechanism underlying modulation of EZH2 stability by linking ANCR interaction with EZH2 to promote its phosphorylation that facilitates EZH2 degradation and suppresses breast cancer progression.
Journal Article
Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity
2017
Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.
Journal Article
A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation
2017
Circular RNAs (circRNAs) are a subclass of noncoding RNAs widely expressed in mammalian cells. We report here the tumorigenic capacity of a circRNA derived from angiomotin-like1 (circ-Amotl1). Circ-Amotl1 is highly expressed in patient tumor samples and cancer cell lines. Single-cell inoculations using circ-Amotl1-transfected tumor cells showed a 30-fold increase in proliferative capacity relative to control. Agarose colony-formation assays similarly revealed a 142-fold increase. Tumor-take rate in nude mouse xenografts using 6-day (219 cells) and 3-day (9 cells) colonies were 100%, suggesting tumor-forming potential of every cell. Subcutaneous single-cell injections led to the formation of palpable tumors in 41% of mice, with tumor sizes >1 cm
3
in 1 month. We further found that this potent tumorigenicity was triggered through interactions between circ-Amotl1 and c-myc. A putative binding site was identified
in silico
and tested experimentally. Ectopic expression of circ-Amotl1 increased retention of nuclear c-myc, appearing to promote c-myc stability and upregulate c-myc targets. Expression of circ-Amotl1 also increased the affinity of c-myc binding to a number of promoters. Our study therefore reveals a novel function of circRNAs in tumorigenesis, and this subclass of noncoding RNAs may represent a potential target in cancer therapy.
Journal Article
Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression
2017
Circular RNAs (circRNAs) have important roles in several cellular processes. No study has established the pathophysiological role for circRNAs in the heart. Here, we show that a circRNA (mitochondrial fission and apoptosis-related circRNA (MFACR)) regulates mitochondrial fission and apoptosis in the heart by directly targeting and downregulating miR-652-3p; this in turn blocks mitochondrial fission and cardiomyocyte cell death by suppressing MTP18 translation.
MTP18
deficiency reduces mitochondrial fission and suppresses cardiomyocyte apoptosis and MI. miR-652-3p directly downregulates MTP18 and attenuates mitochondrial fission, cardiomyocyte apoptosis, and MI
in vitro
and
in vivo
. MFACR directly sequesters miR-652-3p in the cytoplasm and inhibits its activity. MFACR knockdown in cardiomyocytes and mice attenuates mitochondrial fission and MI. Our results reveal a crucial role for circRNA in regulating mitochondrial dynamics and apoptosis in the heart; as such, circRNAs may serve as a potential therapeutic avenue for cardiovascular diseases.
Journal Article
Distribution patterns of tau pathology in progressive supranuclear palsy
2020
Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. We used conditional probability and logistic regression to model the sequential distribution of tau pathologies across different brain regions. Tau pathology uniformly predominates in the neurons of the pallido-nigro-luysian axis in different clinical subtypes. However, clinical subtypes are distinguished not only by total tau load but rather cell-type (neuronal versus glial) specific vulnerability patterns of brain regions suggesting distinct dynamics or circuit-specific segregation of propagation of tau pathologies. For Richardson syndrome (
n
= 81) we recognize six sequential steps of involvement of brain regions by the combination of cellular tau pathologies. This is translated to six stages for the practical neuropathological diagnosis by the evaluation of the subthalamic nucleus, globus pallidus, striatum, cerebellum with dentate nucleus, and frontal and occipital cortices. This system can be applied to further clinical subtypes by emphasizing whether they show caudal (cerebellum/dentate nucleus) or rostral (cortical) predominant, or both types of pattern. Defining cell-specific stages of tau pathology helps to identify preclinical or early-stage cases for the better understanding of early pathogenic events, has implications for understanding the clinical subtype-specific dynamics of disease-propagation, and informs tau-neuroimaging on distribution patterns.
Journal Article
SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress
2018
Recent studies have revealed robust metabolic changes during cell differentiation. Mitochondria, the organelles where many vital metabolic reactions occur, may play an important role. Here, we report the involvement of SIRT3-regulated mitochondrial stress in osteoblast differentiation and bone formation. In both the osteoblast cell line MC3T3-E1 and primary calvarial osteoblasts, robust mitochondrial biogenesis and supercomplex formation were observed during differentiation, accompanied by increased ATP production and decreased mitochondrial stress. Inhibition of mitochondrial activity or an increase in mitochondrial superoxide production significantly suppressed osteoblast differentiation. During differentiation, SOD2 was specifically induced to eliminate excess mitochondrial superoxide and protein oxidation, whereas SIRT3 expression was increased to enhance SOD2 activity through deacetylation of K68. Both SOD2 and SIRT3 knockdown resulted in suppression of differentiation. Meanwhile, mice deficient in SIRT3 exhibited obvious osteopenia accompanied by osteoblast dysfunction, whereas overexpression of SOD2 or SIRT3 improved the differentiation capability of primary osteoblasts derived from SIRT3-deficient mice. These results suggest that SIRT3/SOD2 is required for regulating mitochondrial stress and plays a vital role in osteoblast differentiation and bone formation.
Journal Article
Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation
2016
Ferroptosis is a form of regulated non-apoptotic cell death that has been implicated in several disease contexts. A better understanding of the ferroptotic death mechanism could lead to the development of new therapeutics for degenerative diseases, and a better understanding of how to induce ferroptosis in specific tumor contexts. We performed an unbiased genome-wide siRNA screen to find genetic suppressors of ferroptosis. We determined that loss of
CARS
, the cysteinyl-tRNA synthetase, suppresses ferroptosis induced by erastin, which inhibits the cystine–glutamate antiporter known as system x
c
−
. Knockdown of
CARS
inhibited erastin-induced death by preventing the induction of lipid reactive oxygen species, without altering iron homeostasis. Knockdown of
CARS
led to the accumulation of cystathionine, a metabolite on the transsulfuration pathway, and upregulated genes associated with serine biosynthesis and transsulfuration. In addition, inhibition of the transsulfuration pathway resensitized cells to erastin, even after
CARS
knockdown. These studies demonstrate a new mechanism of resistance to ferroptosis and may lead to strategies for inducing and suppressing ferroptosis in diverse contexts.
Journal Article
Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis
2016
Mixed lineage kinase domain-like pseudokinase (MLKL) mediates necroptosis by translocating to the plasma membrane and inducing its rupture. The activation of MLKL occurs in a multimolecular complex (the ‘necrosome’), which is comprised of MLKL, receptor-interacting serine/threonine kinase (RIPK)-3 (RIPK3) and, in some cases, RIPK1. Within this complex, RIPK3 phosphorylates the activation loop of MLKL, promoting conformational changes and allowing the formation of MLKL oligomers, which migrate to the plasma membrane. Previous studies suggested that RIPK3 could phosphorylate the murine MLKL activation loop at Ser345, Ser347 and Thr349. Moreover, substitution of the Ser345 for an aspartic acid creates a constitutively active MLKL, independent of RIPK3 function. Here we examine the role of each of these residues and found that the phosphorylation of Ser345 is critical for RIPK3-mediated necroptosis, Ser347 has a minor accessory role and Thr349 seems to be irrelevant. We generated a specific monoclonal antibody to detect phospho-Ser345 in murine cells. Using this antibody, a series of MLKL mutants and a novel RIPK3 inhibitor, we demonstrate that the phosphorylation of Ser345 is not required for the interaction between RIPK3 and MLKL in the necrosome, but is essential for MLKL translocation, accumulation in the plasma membrane, and consequent necroptosis.
Journal Article