Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,051 result(s) for "Orthoptera"
Sort by:
Predictability in the evolution of Orthopteran cardenolide insensitivity
The repeated evolutionary specialization of distantly related insects to cardenolide-containing host plants provides a stunning example of parallel adaptation. Hundreds of herbivorous insect species have independently evolved insensitivity to cardenolides, which are potent inhibitors of the alpha-subunit of Na + ,K + -ATPase (ATPα). Previous studies investigating ATPα-mediated cardenolide insensitivity in five insect orders have revealed remarkably high levels of parallelism in the evolution of this trait, including the frequent occurrence of parallel amino acid substitutions at two sites and recurrent episodes of duplication followed by neo-functionalization. Here we add data for a sixth insect order, Orthoptera, which includes an ancient group of highly aposematic cardenolide-sequestering grasshoppers in the family Pyrgomorphidae. We find that Orthopterans exhibit largely predictable patterns of evolution of insensitivity established by sampling other insect orders. Taken together the data lend further support to the proposal that negative pleiotropic constraints are a key determinant in the evolution of cardenolide insensitivity in insects. Furthermore, analysis of our expanded taxonomic survey implicates positive selection acting on site 111 of cardenolide-sequestering species with a single-copy of ATPα, and sites 115, 118 and 122 in lineages with neo-functionalized duplicate copies, all of which are sites of frequent parallel amino acid substitution. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’.
Functional and evolutionary synergy of trait components can explain the existence of leaf masquerade in katydids
One of the most enduring mysteries in biology concerns the evolution of complex adaptations made up of interacting component traits. When these component traits do not enhance fitness independently of one another, their origin requires that they evolve sequentially through intermediate steps that do not produce their full adaptive value as a combined trait, or alternatively, that they arise via simultaneous, synergistic evolution. We tested these alternatives using the powerful but accessible example of leaf masquerade in katydids, where in some species, highly modified wings strikingly mimic vegetation to avoid predator recognition. Combining a field predation experiment with a phylogenetic comparative analysis of wing morphology in 58 Neotropical katydid species, we show that color and shape synergistically interact to enhance survival in the wild, and modifications in both traits evolved concurrently during diversification of this clade. Our findings identify the adaptive value of masquerade camouflage in the wild and show how concordant evolutionary change in separate traits—evolutionary synergy—can generate extraordinarily specialized, multi-component adaptations.
Ovipositor and mouthparts in a fossil insect support a novel ecological role for early orthopterans in 300 million years old forests
A high portion of the earliest known insect fauna is composed of the so-called ‘lobeattid insects’, whose systematic affinities and role as foliage feeders remain debated. We investigated hundreds of samples of a new lobeattid species from the Xiaheyan locality using a combination of photographic techniques, including reflectance transforming imaging, geometric morphometrics, and biomechanics to document its morphology, and infer its phylogenetic position and ecological role. Ctenoptilus frequens sp. nov. possessed a sword-shaped ovipositor with valves interlocked by two ball-and-socket mechanisms, lacked jumping hind-legs, and certain wing venation features. This combination of characters unambiguously supports lobeattids as stem relatives of all living Orthoptera (crickets, grasshoppers, katydids). Given the herein presented and other remains, it follows that this group experienced an early diversification and, additionally, occurred in high individual numbers. The ovipositor shape indicates that ground was the preferred substrate for eggs. Visible mouthparts made it possible to assess the efficiency of the mandibular food uptake system in comparison to a wide array of extant species. The new species was likely omnivorous which explains the paucity of external damage on contemporaneous plant foliage.
Fiddler on the Tree - A Bush-Cricket Species with Unusual Stridulatory Organs and Song: e92366
Insects of the order Orthoptera are well-known for their acoustic communication. The structures used for this purpose show a high diversity which obviously relates to differences in song parameters and to the physics of sound production. Here we describe song and morphology of the sound producing organs of a tropical bush-cricket, Ectomoptera nepicauda, from East Africa. It has a very unusual calling song consisting of frequency-modulated, pure-tone sounds in the high ultrasonic range of 80 to120 kHz and produced by extremely fast wing movements. Concerning morphology, it represents the most extreme state in the degree of left-right fore-wing differentiation found among Orthoptera: the acoustic parts of the left fore-wing consist exclusively of the stridulatory file, comparable in function to the bow of a violin, while the right wing carries only the plectrum ( = string) and mirror ( = soundbox).
Orthoptera-specific target enrichment (OR-TE) probes resolve relationships over broad phylogenetic scales
Phylogenomic data are revolutionizing the field of insect phylogenetics. One of the most tenable and cost-effective methods of generating phylogenomic data is target enrichment, which has resulted in novel phylogenetic hypotheses and revealed new insights into insect evolution. Orthoptera is the most diverse insect order within polyneoptera and includes many evolutionarily and ecologically interesting species. Still, the order as a whole has lagged behind other major insect orders in terms of transitioning to phylogenomics. In this study, we developed an Orthoptera-specific target enrichment (OR-TE) probe set from 80 transcriptomes across Orthoptera. The probe set targets 1828 loci from genes exhibiting a wide range of evolutionary rates. The utility of this new probe set was validated by generating phylogenomic data from 36 orthopteran species that had not previously been subjected to phylogenomic studies. The OR-TE probe set captured an average of 1037 loci across the tested taxa, resolving relationships across broad phylogenetic scales. Our detailed documentation of the probe design and bioinformatics process is intended to facilitate the widespread adoption of this tool.
The evolutionary dynamics of genome sizes and repetitive elements in Ensifera (Insecta: Orthoptera)
Background In evolutionary biology, identifying and quantifying inter-lineage genome size variation and elucidating the underlying causes of that variation have long been goals. Repetitive elements (REs) have been proposed and confirmed as being among the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and RE dynamics are not well understood. Results A total of 35 Ensifera insects were collected from different areas in China, including nine species of crickets and 26 species of katydids. The genome sizes of seven species were then determined using flow cytometry. The RepeatExplorer2 pipeline was employed to retrieve the repeated sequences for each species, based on low-coverage (0.1 X) high-throughput Illumina unassembled short reads. The genome sizes of the 35 Ensifera insects exhibited a considerable degree of variation, ranging from 1.00 to 18.34 pg. This variation was more than 18-fold. Similarly, the RE abundances exhibited considerable variation, ranging from 13.66 to 61.16%. In addition, the Tettigonioidea had larger genomes and contained significantly more REs than did the Grylloidea genomes. Analysis of the correlation between RE abundance and the genome size of 35 Ensifera insects revealed that the abundance of REs, transposable elements (TEs), long terminal repeats (LTRs), and long interspersed nuclear elements (LINEs) are significantly correlated with genome size. Notably, there is an inflection point in this correlation, where species with increasingly large genomes (e.g., > 5–10 pg) have repeats that contribute less to genome expansion than expected. Furthermore, this study revealed contrasting evolutionary directions between the Tettigonioidea and Grylloidea clades in terms of the expansion of REs. Tettigonioidea species exhibit a gradual increase in ancestral genome size and RE abundance as they diverge, while Grylloidea species experience sustained genome contraction. Conclusions This study reveals extensive variation in genome size and RE abundance in Ensifera insects, with distinct evolutionary patterns across two major groups, Tettigonioidea and Grylloidea. This provides valuable insights into the variation in genome size and RE abundance in Ensifera insects, offering a comprehensive understanding of their evolutionary history.
DNA barcode reference library of bush-crickets (Orthoptera, Tettigoniidae) from the Iberian Peninsula
Curated DNA barcode reference libraries are crucial for advancing environmental DNA (eDNA) studies, monitoring biological invasions, reliable biodiversity assessments, accurate species identification, etc. However, DNA barcode databases remain highly incomplete for most invertebrate taxa. In this study, we present the most comprehensive reference library to date for the family Tettigoniidae (Orthoptera) from the Iberian Peninsula—the most species-rich orthopteran family globally, with over 8,000 valid species. We generated 402 new DNA barcodes from at least 121 tettigoniid species from the Iberian Peninsula and integrated these with 169 previously published sequences. The resulting dataset comprises 571 barcoded specimens, representing 49 genera and 123 species, including many recently described taxa. Notably, we provide DNA barcodes for at least 68 described species that previously lacked them. Our dataset covers 85% of the tettigoniid species in the Iberian Peninsula and approximately 25% of European bush-cricket species. Furthermore, our analyses show that most tettigoniid species (95%) can be reliably identified using DNA barcoding. However, mitochondrial introgression events were detected in several species of the subfamilies Bradyporinae and Tettigoniinae, highlighting the need for cautious application of this molecular identification tool.
First detection of Wolbachia in the New Zealand biota
Notes how Wolbachia has yet to be formally identified in the fauna of New Zealand. Identifies six endemic Orthoptera species that were positive for Wolbachia infection. Detects a further 153 individuals positive for Wolbachia. Obtains sequence data for the ftsZ gene region from 86 individuals representing 10 host species. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.
New estimates of genome size in Orthoptera and their evolutionary implications
Animal genomes vary widely in size, and much of their architecture and content remains poorly understood. Even among related groups, such as orders of insects, genomes may vary in size by orders of magnitude–for reasons unknown. The largest known insect genomes were repeatedly found in Orthoptera, e.g., Podisma pedestris (1C = 16.93 pg), Stethophyma grossum (1C = 18.48 pg) and Bryodemella holdereri (1C = 18.64 pg). While all these species belong to the suborder of Caelifera, the ensiferan Deracantha onos (1C = 19.60 pg) was recently found to have the largest genome. Here, we present new genome size estimates of 50 further species of Ensifera (superfamilies Gryllidea, Tettigoniidea) and Caelifera (Acrididae, Tetrigidae) based on flow cytometric measurements. We found that Bryodemella tuberculata (Caelifera: Acrididae) has the so far largest measured genome of all insects with 1C = 21.96 pg (21.48 gBp). Species of Orthoptera with 2n = 16 and 2n = 22 chromosomes have significantly larger genomes than species with other chromosome counts. Gryllidea genomes vary between 1C = 0.95 and 2.88 pg, and Tetrigidae between 1C = 2.18 and 2.41, while the genomes of all other studied Orthoptera range in size from 1C = 1.37 to 21.96 pg. Reconstructing ancestral genome sizes based on a phylogenetic tree of mitochondrial genomic data, we found genome size values of >15.84 pg only for the nodes of Bryodemella holdereri / B . tuberculata and Chrysochraon dispar / Euthystira brachyptera . The predicted values of ancestral genome sizes are 6.19 pg for Orthoptera, 5.37 pg for Ensifera, and 7.28 pg for Caelifera. The reasons for the large genomes in Orthoptera remain largely unknown, but a duplication or polyploidization seems unlikely as chromosome numbers do not differ much. Sequence-based genomic studies may shed light on the underlying evolutionary mechanisms.
Shrinking Wings for Ultrasonic Pitch Production: Hyperintense Ultra-Short-Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae)
This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz-20 kHz) by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re 20 µPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (<0.5 mm(2)). Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.