Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
588
result(s) for
"Oryza - parasitology"
Sort by:
Increase in crop losses to insect pests in a warming climate
by
Battisti, David S.
,
Merrill, Scott C.
,
Deutsch, Curtis A.
in
Animals
,
Basal Metabolism
,
Cereal crops
2018
Crop responses to climate warming suggest that yields will decrease as growing-season temperatures increase. Deutsch
et al.
show that this effect may be exacerbated by insect pests (see the Perspective by Riegler). Insects already consume 5 to 20% of major grain crops. The authors' models show that for the three most important grain crops—wheat, rice, and maize—yield lost to insects will increase by 10 to 25% per degree Celsius of warming, hitting hardest in the temperate zone. These findings provide an estimate of further potential climate impacts on global food supply and a benchmark for future regional and field-specific studies of crop-pest-climate interactions.
Science
, this issue p.
916
; see also p.
846
Models of insect population growth and metabolism in a warming climate predict losses of major food crops to insect pests.
Insect pests substantially reduce yields of three staple grains—rice, maize, and wheat—but models assessing the agricultural impacts of global warming rarely consider crop losses to insects. We use established relationships between temperature and the population growth and metabolic rates of insects to estimate how and where climate warming will augment losses of rice, maize, and wheat to insects. Global yield losses of these grains are projected to increase by 10 to 25% per degree of global mean surface warming. Crop losses will be most acute in areas where warming increases both population growth and metabolic rates of insects. These conditions are centered primarily in temperate regions, where most grain is produced.
Journal Article
Regulation of Strigolactone Biosynthesis by Gibberellin Signaling
by
Yajima, Shunsuke
,
Shirasu, Ken
,
Kyozuka, Junko
in
Genes, Plant
,
Germination - drug effects
,
Gibberellins - metabolism
2017
Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.
Journal Article
Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice
by
Lou, Yonggen
,
Erb, Matthias
,
Hu, Lingfei
in
Animals
,
Cyclopentanes - metabolism
,
Disease Resistance
2019
Herbivore-induced plant volatiles prime plant defenses and resistance, but how they are integrated into early defense signaling and whether a causal relationship exists between volatile defense priming and herbivore resistance is unclear. Here, we investigated the impact of indole, a common herbivore-induced plant volatile and modulator of many physiological processes in plants, bacteria, and animals, on early defense signaling and herbivore resistance in rice (Oryza sativa). Rice plants infested by fall armyworm (Spodoptera frugiperda) caterpillars release indole at a rate of up to 25 ng*h−1. Exposure to equal doses of exogenous indole enhances rice resistance to S. frugiperda. Screening of early signaling components revealed that indole pre-exposure directly enhances the expression of the leucine-rich repeat-receptor-like kinase OsLRR-RLK1. Pre-exposure to indole followed by simulated herbivory increases (i.e. primes) the transcription, accumulation, and activation of the mitogen-activated protein kinase OsMPK3 and the expression of the downstream WRKY transcription factor gene OsWRKY70 as well as several jasmonate biosynthesis genes, resulting in higher jasmonic acid (JA) accumulation. Analysis of transgenic plants defective in early signaling showed that OsMPK3 is required and that OsMPK6 and OsWRKY70 contribute to indole-mediated defense priming of JA-dependent herbivore resistance. Therefore, herbivore-induced plant volatiles increase plant resistance to herbivores by positively regulating early defense signaling components.
Journal Article
Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice
2018
The brown planthopper (BPH) and white-backed planthopper (WBPH) are the most destructive insect pests of rice, and they pose serious threats to rice production throughout Asia. Thus, there are urgent needs to identify resistance-conferring genes and to breed planthopper-resistant rice varieties. Here we report the map-based cloning and functional analysis of
Bph6
, a gene that confers resistance to planthoppers in rice.
Bph6
encodes a previously uncharacterized protein that localizes to exocysts and interacts with the exocyst subunit OsEXO70E1.
Bph6
expression increases exocytosis and participates in cell wall maintenance and reinforcement. A coordinated cytokinin, salicylic acid and jasmonic acid signaling pathway is activated in
Bph6
-carrying plants, which display broad resistance to all tested BPH biotypes and to WBPH without sacrificing yield, as these plants were found to maintain a high level of performance in a field that was heavily infested with BPH. Our results suggest that a superior resistance gene that evolved long ago in a region where planthoppers are found year round could be very valuable for controlling agricultural insect pests.
The study reports map-based cloning and functional analysis of
Bph6
, which is associated with resistance to planthoppers in rice. BPH6 localizes to the exocyst and interacts with OsEXO70E1, and suppression of
OsExo70E1
expression decreases resistance in
Bph6
-NIL plants.
Journal Article
The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice
2017
BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.
Journal Article
A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants
2018
The brown planthopper, Nilaparvata lugens, is a pest that threatens rice (Oryza sativa) production worldwide. While feeding on rice plants, planthoppers secrete saliva, which plays crucial roles in nutrient ingestion and modulating plant defense responses, although the specific functions of salivary proteins remain largely unknown. We identified an N. lugens-secreted mucin-like protein (NlMLP) by transcriptome and proteome analyses and characterized its function, both in brown planthopper and in plants. NlMLP is highly expressed in salivary glands and is secreted into rice during feeding. Inhibition of NlMLP expression in planthoppers disturbs the formation of salivary sheaths, thereby reducing their performance. In plants, NlMLP induces cell death, the expression of defense-related genes, and callose deposition. These defense responses are related to Ca²⁺ mobilization and the MEK2 MAP kinase and jasmonic acid signaling pathways. The active region of NlMLP that elicits plant responses is located in its carboxyl terminus. Our work provides a detailed characterization of a salivary protein from a piercing-sucking insect other than aphids. Our finding that the protein functions in plant immune responses offers new insights into the mechanism underlying interactions between plants and herbivorous insects.
Journal Article
The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice
2019
Carotenoid cleavage dioxygenases (CCDs) form hormones and signaling molecules. Here we show that a member of an overlooked plant CCD subfamily from rice, that we name Zaxinone Synthase (ZAS), can produce zaxinone, a novel apocarotenoid metabolite in vitro. Loss-of-function mutants (
zas
) contain less zaxinone, exhibit retarded growth and showed elevated levels of strigolactones (SLs), a hormone that determines plant architecture, mediates mycorrhization and facilitates infestation by root parasitic weeds, such as
Striga
spp. Application of zaxinone can rescue
zas
phenotypes, decrease SL content and release and promote root growth in wild-type seedlings. In conclusion, we show that zaxinone is a key regulator of rice development and biotic interactions and has potential for increasing crop growth and combating
Striga
, a severe threat to global food security.
Strigolactone and abscisic acid are carotenoid-derived plant hormones. Here the authors describe the identification of zaxinone, a further apocarotenoid metabolite, which down-regulates strigolactone content and is required for normal growth and development in rice.
Journal Article
Inhibition of shoot branching by new terpenoid plant hormones
by
Shirasu, Ken
,
Yoneyama, Koichi
,
Hanada, Atsushi
in
Analysis
,
Arabidopsis
,
Arabidopsis - drug effects
2008
Shoot branching is a major determinant of plant architecture and is highly regulated by endogenous and environmental cues. Two classes of hormones, auxin and cytokinin, have long been known to have an important involvement in controlling shoot branching. Previous studies using a series of mutants with enhanced shoot branching suggested the existence of a third class of hormone(s) that is derived from carotenoids, but its chemical identity has been unknown. Here we show that levels of strigolactones, a group of terpenoid lactones, are significantly reduced in some of the branching mutants. Furthermore, application of strigolactones inhibits shoot branching in these mutants. Strigolactones were previously found in root exudates acting as communication chemicals with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Thus, we propose that strigolactones act as a new hormone class—or their biosynthetic precursors—in regulating above-ground plant architecture, and also have a function in underground communication with other neighbouring organisms.
Branching out: new class of plant hormones inhibits branch formation
For many years the textbooks recognized five 'classic' plant hormones: auxin, gibberellins, ethylene, cytokinin and abscisic acid. To these can be added the brassinosteroids, nitric oxide and jasmonates, among others, as phytohormones or plant growth regulators. Shoot branching is regulated by hormones, with both auxin and cytokinin playing a part. But the existence of mutants with enhanced branching in several species suggested a third factor was involved, a novel plant hormone released from the roots that prevents excessive shoot branching. Two groups now identify a class of chemical compounds called strigolactones — or one of their derivatives — as that missing hormone. Strigolactones are found in root exudates and are reduced in the branching mutants; external application of these chemicals inhibits shoot branching in the mutants.
Shoot branching is regulated by hormones. Branching mutants in several plant species suggests the existence of a plant hormone that is released from the roots and prevents excessive shoot branching. This paper reports on one of two studies that show that a class of chemical compounds called strigolactones found in root exudates are reduced in the branching mutants and that external application of these chemicals inhibits shoot branching in the mutants. It is proposed that strigolactones or related metabolites are the sought after class of hormones.
Journal Article
A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice
2015
Liu et al. provide new resources for improving rice by cloning a gene cluster that enhances resistance to two species of planthoppers, which cause billions of dollars of crop loss.
The brown planthopper (BPH) is the most destructive pest of rice (
Oryza sativa
) and a substantial threat to rice production, causing losses of billions of dollars annually
1
,
2
. Breeding of resistant cultivars is currently hampered by the rapid breakdown of BPH resistance
2
. Thus, there is an urgent need to identify more effective BPH-resistance genes. Here, we report molecular cloning and characterization of
Bph3
, a locus in rice identified more than 30 years ago that confers resistance to BPH. We show that
Bph3
is a cluster of three genes encoding plasma membrane–localized lectin receptor kinases (OsLecRK1-OsLecRK3). Introgression of
Bph3
into susceptible rice varieties by transgenic or marker-assisted selection strategies significantly enhanced resistance to both the BPH and the white back planthopper. Our results suggest that these lectin receptor kinase genes function together to confer broad-spectrum and durable insect resistance and provide a resource for molecular breeding of insect-resistant rice cultivars.
Journal Article
A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling
2016
Summary
Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below‐ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction.
Glasshouse experiments with wild‐type rice and coi1‐18 and Eui1‐OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions.
The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte‐elicited GA biosynthesis suppressed the herbivore‐induced JA in roots and recovered plant growth.
Our study shows for the first time the impact of a root endophyte on plant defense against below‐ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.
Journal Article