Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
617 result(s) for "Oryzias - genetics"
Sort by:
Tracing the Emergence of a Novel Sex-Determining Gene in Medaka, Oryzias luzonensis
Three sex-determining (SD) genes, SRY (mammals), Dmy (medaka), and DM-W (Xenopus laevis), have been identified to date in vertebrates. However, how and why a new sex-determining gene appears remains unknown, as do the switching mechanisms of the master sex-determining gene. Here, we used positional cloning to search for the sex-determining gene in Oryzias luzonensis and found that GsdfY (gonadal soma derived growth factor on the Y chromosome) has replaced Dmy as the master sex-determining gene in this species. We found that GsdfY showed high expression specifically in males during sex differentiation. Furthermore, the presence of a genomic fragment that included GsdfY converts XX individuals into fertile XX males. Luciferase assays demonstrated that the upstream sequence of GsdfY contributes to the male-specific high expression. Gsdf is downstream of Dmy in the sex-determining cascade of O. latipes, suggesting that emergence of the Dmy-independent Gsdf allele led to the appearance of this novel sex-determining gene in O. luzonensis.
YAP is essential for tissue tension to ensure vertebrate 3D body shape
D’Arcy Thompson predicted a century ago that animal body shape is conditioned by gravity, but there has been no animal model to study how cellular forces are coordinated to generate body shapes that withstand gravity; the hirame medaka fish mutant, with pronounced body flattening, reveals how the hirame /YAP gene controls gravity-resisting cellular forces to produce complex 3D organs and body shapes. YAP protein gives tissue shape How is tissue tension controlled at the organismal level to maintain body shape and complex three-dimensional structures? Makoto Furutani-Seiki and colleagues describe a medaka fish mutant, hirame ( hir ), with a flattened body. They show that the phenotype is due to reduction of internal forces caused by the absence of YAP protein, part of the Hippo signalling pathway. This striking effect is linked to the control exerted by YAP on actomyosin-mediated tension through the regulation of the RhoGAP GTPase activating protein ARHGAP18. YAP also controls the 3D structure of human cell spheres in this manner in a human cell culture system. Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head 1 . Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force 2 , 3 . Although a century ago D’Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity 4 , there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish ( Oryzias latipes ) mutant, hirame ( hir ), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
Wild Sex in Zebrafish: Loss of the Natural Sex Determinant in Domesticated Strains
Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this “RAD-sex” method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, “male genotypes” became males and some “female genotypes” also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture.
Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins
Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun ( ktu ), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas . In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment. Cilia formation: a role for Ktu/PF13 Cilia are microtubule-rich hair-like projections on the surface of cells and are important for motility and sensory functions. Defects in cilia motility result in primary ciliary diskynesia (PCD). In this study, Takeda and colleagues, identify a novel gene, kintoun ( ktu ) important for dynein arm formation resulting in the formation of motile cilia. It is conserved from ciliated unicellular organisms to high mammals. The authors also identified mutations in the homologous gene of two human primary ciliary dyskesia families. This paper identifies a gene, kintoun ( ktu ), which is important for dynein arm formation resulting in the formation of motile cilia. It is conserved from ciliated unicellular organisms to higher mammals. Mutations in the homologous gene of two human primary ciliary dyskinesia families are also identified.
The Genomic and Genetic Toolbox of the Teleost Medaka ( Oryzias latipes )
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena
Sex chromosomes harbour a primary sex-determining signal that triggers sexual development of the organism. However, diverse sex chromosome systems have been evolved in vertebrates. Here we use positional cloning to identify the sex-determining locus of a medaka-related fish, Oryzias dancena , and find that the locus on the Y chromosome contains a cis -regulatory element that upregulates neighbouring Sox3 expression in developing gonad. Sex-reversed phenotypes in Sox3 Y transgenic fish, and Sox3 Y loss-of-function mutants all point to its critical role in sex determination. Furthermore, we demonstrate that Sox3 initiates testicular differentiation by upregulating expression of downstream Gsdf , which is highly conserved in fish sex differentiation pathways. Our results not only provide strong evidence for the independent recruitment of Sox3 to male determination in distantly related vertebrates, but also provide direct evidence that a novel sex determination pathway has evolved through co-option of a transcriptional regulator potentially interacted with a conserved downstream component. Sex chromosomes harbour specific sequences that determine the sexual development of the organism; yet these sequences remain unknown for many species. Here, Takehana et al. show that, similarly to mammals, Sox3 on the Y chromosome is the male-determining factor in the medaka-related fish Oryzias dancena .
Genetic and functional insights into the fractal structure of the heart
The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development 1 , 2 . The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank. We identified 16 significant loci that contain genes associated with haemodynamic phenotypes and regulation of cytoskeletal arborization 3 , 4 . Using biomechanical simulations and observational data from human participants, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Through genetic association studies with cardiac disease phenotypes and Mendelian randomization, we find a causal relationship between trabecular morphology and risk of cardiovascular disease. These findings suggest a previously unknown role for myocardial trabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity and reveal the influence of the myocardial trabeculae on susceptibility to cardiovascular disease. A genome-wide association study shows that myocardial trabeculae are an important determinant of cardiac performance in the adult heart, identifies conserved pathways that regulate structural complexity and reveals the influence of trabeculae on the susceptibility to cardiovascular disease.
The Ly6/uPAR protein Bouncer is necessary and sufficient for species-specific fertilization
Fertilization needs to be highly efficient while remaining species-specific. However, despite decades of research, it is still unclear how these two requirements are met. Herberg et al. report the discovery of the Ly6/uPAR-type protein Bouncer as a species-specific fertilization factor in zebrafish (see the Perspective by Lehmann). Bouncer localizes to the egg membrane and is required for sperm entry. Remarkably, expression of Bouncer from another fish species (medaka) in zebrafish allowed for cross-species fertilization. Science , this issue p. 1029 ; see also p. 974 The short, oocyte-expressed protein Bouncer mediates species-specific fertilization in fish. Fertilization is fundamental for sexual reproduction, yet its molecular mechanisms are poorly understood. We found that an oocyte-expressed Ly6/uPAR protein, which we call Bouncer, is a crucial fertilization factor in zebrafish. Membrane-bound Bouncer mediates sperm-egg binding and is thus essential for sperm entry into the egg. Remarkably, Bouncer not only is required for sperm-egg interaction but is also sufficient to allow cross-species fertilization between zebrafish and medaka, two fish species that diverged more than 200 million years ago. Our study thus identifies Bouncer as a key determinant of species-specific fertilization in fish. Bouncer’s closest homolog in tetrapods, SPACA4, is restricted to the male germline in internally fertilizing vertebrates, which suggests that our findings in fish have relevance to human biology.
A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins
Despite their evolutionary, developmental and functional importance, the origin of vertebrate paired appendages remains uncertain. In mice, a single enhancer termed ZRS is solely responsible for Shh expression in limbs. Here, zebrafish and mouse transgenic assays trace the functional equivalence of ZRS across the gnathostome phylogeny. CRISPR/Cas9-mediated deletion of the medaka ( Oryzias latipes ) ZRS and enhancer assays identify the existence of ZRS shadow enhancers in both teleost and human genomes. Deletion of both ZRS and shadow ZRS abolishes shh expression and completely truncates pectoral fin formation. Strikingly, deletion of ZRS results in an almost complete ablation of the dorsal fin. This finding indicates that a ZRS- Shh regulatory module is shared by paired and median fins and that paired fins likely emerged by the co-option of developmental programs established in the median fins of stem gnathostomes. Shh function was later reinforced in pectoral fin development with the recruitment of shadow enhancers, conferring additional robustness. The authors study the cis-regulatory evolution of the Shh locus in vertebrates. Using genomic editing and chromatin profiling, they conclude that paired fins emerged through the co-option of developmental programs for the median fins of gnathostomes.
Hypoxia causes transgenerational impairments in reproduction of fish
Hypoxia is amongst the most widespread and pressing problems in aquatic environments. Here we demonstrate that fish ( Oryzias melastigma ) exposed to hypoxia show reproductive impairments (retarded gonad development, decrease in sperm count and sperm motility) in F1 and F2 generations despite these progenies (and their germ cells) having never been exposed to hypoxia. We further show that the observed transgenerational reproductive impairments are associated with a differential methylation pattern of specific genes in sperm of both F0 and F2 coupled with relevant transcriptomic and proteomic alterations, which may impair spermatogenesis. The discovered transgenerational and epigenetic effects suggest that hypoxia might pose a dramatic and long-lasting threat to the sustainability of fish populations. Because the genes regulating spermatogenesis and epigenetic modifications are highly conserved among vertebrates, these results may also shed light on the potential transgenerational effects of hypoxia on other vertebrates, including humans. Hypoxia has diverse effects on aquatic life. Wang et al. show that reproductive defects resulting from hypoxia are epigenetically heritable in Japanese rice fish, and that this intergenerational inheritance is accompanied by differential methylation and gene expression in sperm.