Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
62,676 result(s) for "Oscillations"
Sort by:
Investigation of the period of natural oscillations of the embankment on approaches to bridges
The article analyzes the designs of existing transition sections on the approaches to bridges and shows a decrease in the natural oscillation period of the subgrade as a result of strengthening the transition sections with the developed design solutions.
Differential Credibility of Climate Modes in CMIP6
This work quantitatively evaluates the fidelity with which the northern annular mode (NAM), southern annular mode (SAM), Pacific–North American pattern (PNA), El Niño–Southern Oscillation (ENSO), Pacific decadal oscillation (PDO), Atlantic multidecadal oscillation (AMO), and the first-order mode interactions are represented in Earth system model (ESM) output from the CMIP6 archive. Several skill metrics are used as part of a differential credibility assessment (DCA) of both spatial and temporal characteristics of the modes across ESMs, ESM families, and specific ESM realizations relative to ERA5. The spatial patterns and probability distributions are generally well represented but skill scores that measure the degree to which the frequencies of maximum variance are captured are consistently lower for most ESMs and climatemodes. Substantial variability in skill scoresmanifests across realizations fromindividual ESMs for the PNA and oceanic modes. Further, the ESMs consistently overestimate the strength of the NAM–PNA first-order interaction and underestimate the NAM–AMO connection. These results suggest that the choice of ESMand ESM realizations will continue to play a critical role in determining climate projections at the global and regional scale at least in the near term. SIGNIFICANCE STATEMENT: Internal climate variability occurs over multiple spatial and temporal scales and is encapsulated in a series of internal climate modes. The representation of such modes in climate models is a critically important aspect of model fidelity. Analyses presented herein uses several skill scores to evaluate both the spatial and temporal manifestations of these climate modes in the CMIP6 generation of Earth system models (ESMs). There is marked variability in model fidelity for these modes and this variability in credibility within the current climate has important implications for the choice of specific ESMs and ESM realizations in making climate projections.
Representation of Modes of Variability in Six U.S. Climate Models
We compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of “intermediary” experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.
Oscillating Relationship between the East Asian Winter Monsoon and ENSO
This work investigates the interdecadal variations of the relationship between the El Niño–Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM), further explores possible mechanisms, and finally considers a recent switch in the ENSO–EAWM relationship. The 23-yr sliding correlation between the Niño-3.4 index and the EAWM index reveals an obvious low-frequency oscillation with a period of about 50 yr in the ENSO–EAWM relationship. Warm ENSO events during high-correlation periods are associated with an unusually weak East Asian trough, a positive phase of the North Pacific Oscillation (NPO), significant southerly wind anomalies along coastal East Asia, and warmer East Asian continent and adjacent oceans. However, there are no robust and significant anomalies in the EAWM-related circulation during low-correlation periods. Because of the southeastward shift of the Walker circulation, the area of anomalously high pressure in the western Pacific retreats south of 25°N, confining it to the region of the Philippine Sea. In this sense, the Pacific–East Asian teleconnection is not well established. Consequently, ENSO’s impact on the EAWM is suppressed. Additionally, the low-frequency oscillation of the ENSO–EAWM relationship might be attributable to the combined effect of the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation owing to their modulation on the establishment of the NPO teleconnection. The observation of two full cycles of the ENSO–EAWM relationship, a transition to negative PDO in the early 2000s and an enhancement of the Walker circulation in the late 1990s, suggests a recovery of the ENSO–EAWM relationship.
Variations in global zonal wind from 18 to 100 km due to solar activity and the quasi-biennial oscillation and El Niño–Southern Oscillation during 2002–2019
Variations of global wind are important in changing the atmospheric structure and circulation, in coupling of atmospheric layers, and in influencing the wave propagations. Due to the difficulty of directly measuring zonal wind from the stratosphere to the lower thermosphere, we derived a global balance wind (BU) dataset from 50∘ S to 50∘ N and during 2002–2019 using the gradient wind theory and SABER temperatures and modified by meteor radar observations at the Equator. The dataset captures the main feature of global monthly mean zonal wind and can be used to study the variations (i.e., annual, semi-annual, ter-annual, and linear) of zonal wind and the responses of zonal wind to quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), and solar activity (F10.7). The same procedure is performed on the MERRA-2 zonal wind (MerU) to validate BU and its responses below 70 km. The annual, semi-annual, and ter-annual oscillations of BU and MerU have similar amplitudes and phases. The semi-annual oscillation of BU has peaks around 80 km, which are stronger in the southern tropical region and coincide with previous satellite observations. As the increasing of the values representing QBO wind, both values of representing BU and MerU (short for BU and MerU) change from increasing to decreasing with the increasing height and extend from the Equator to higher latitudes. Both BU and MerU increase with the increasing of the values of multivariate ENSO index (MEI) and decrease with increasing F10.7​​​​​​​ in the southern stratospheric polar jet region below 70 km. The responses of winds to ENSO and F10.7 exhibit hemispheric asymmetry and are more significant in the southern polar jet region. While above 70 km, BU increases with the increasing of MEI and F10.7. The negative linear changes of BU at 50∘ N are absent in MerU during October–January. The discussions on the possible influences of the temporal intervals and sudden stratospheric warmings (SSWs) on the variations and responses of BU illustrate the following: (1) the seasonal variations and the responses to QBO are almost independent on the temporal intervals selected; (2) the responses to ENSO and F10.7 are robust but slightly depend on the temporal intervals; (3) the linear changes of both BU and MerU depend strongly on the temporal intervals; (4) SSWs affect the magnitudes but do not affect the hemispheric asymmetry of the variations and responses of BU at least in the monthly mean sense. The variations and responses of global zonal wind to various factors are based on BU, which is derived from observations, and thus provide a good complement to model studies and ground-based observations.
Impact of individual and combined influence of large-scale climatic oscillations on Indian summer monsoon rainfall extremes
The occurrence of extreme precipitation events during Indian Summer Monsoon Rainfall (ISMR) has increased significantly in recent decades. Natural spatio-temporal variability of extreme precipitation events in India has been linked to various climatic variables like El Niño Southern Oscillation (ENSO), Equatorial Indian Ocean Oscillation (EQUINOO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). In this study, extreme precipitation indices are used to characterize the ISMR extremes and possible individual and coupled association with climatic variables identified using wavelet analysis. Region-based analysis revealed that ENSO, EQUINOO, PDO, and AMO influence extreme precipitation events on spatio-temporal scales. Variability of the duration of extreme precipitation events strongly depends on the ENSO at interannual scale compared to the other climate variables whereas, total precipitation greater than 95th percentile and maximum consecutive 5-day precipitation values were significantly coherent on inter-decadal scale with ENSO, EQUINOO, and PDO. It is also found that the climate variables together cause variability in ISMR extremes, particularly AMO-ENSO-EQUINOO and AMO-ENSO-PDO combinations explain the variability better than any other combination. An increase in the number of climate variables did not improve the coherence, since these climatic variables are correlated with each other. Further, the decomposition of wavelets at different scales shows that more than half of the grid points considered were significant at interdecadal and multidecadal scales even though they are designated with different time scales. This indicates that the non-stationary behavior of the ISMR extremes is directly linked to the climatic variables at higher scales.
El Niño–Southern Oscillation complexity
El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño–Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system. Our current understanding of the spatio-temporal complexity of the El Niño–Southern Oscillation phenomenon is reviewed and a unifying framework that identifies the key factors for this complexity is proposed.
Multi-scale climate variations and mechanisms of the onset and withdrawal of the South China Sea summer monsoon
The onset of the South China Sea summer monsoon (SCSSM) heralds the establishment of the large-scale East Asian summer monsoon and the western North Pacific summer monsoon, as well as the beginning of the major rainy season. The occurrence of an early or late SCSSM onset is an important indicator for the summertime climate anomalies over East and Southeast Asia. Therefore, the onset of the SCSSM has received extensive research attention, and has been one of the key foci of monsoon research in recent decades. This paper reviews the multi-scale climate variations (from interdecadal to synoptic scales) and mechanisms of the SCSSM onset, with special attention paid to the progress in the past five years. On the interdecadal timescale, the SCSSM onset underwent a significant advancement in the mid-to-late 1990s, which may have been related to the background condition of the Pacific Ocean. On the interannual timescale, El Niño-Southern Oscillation (ENSO) is considered to be the most critical factor controlling the variability of the SCSSM onset. However, the linkage between ENSO and the SCSSM onset has become much weaker and insignificant in recent years. The intraseasonal oscillations (including the 30–60-day oscillation and quasi-biweekly oscillation) are important modulators of the SCSSM onset. The transition from an inactive phase to an active phase may be more worthy of attention than the phase itself. There appear to be close interactions between the SCSSM onset and synoptic-scale systems like tropical cyclones (TCs). TCs are important triggers for the SCSSM onset, while in return the SCSSM onset provides a favorable background condition for the formation and development of TCs. In addition, this paper also reviews a series of recent works on the withdrawal of the SCSSM. Finally, to close the paper, some important scientific issues worthy of further investigation are put forward.
Global Total Ozone Recovery Trends Attributed to Ozone-Depleting Substance (ODS) Changes Derived From Five Merged Ozone Datasets
We report on updated trends using different merged zonal mean total ozone datasets from satellite and ground-based observations for the period from 1979 to 2020. This work is an update of the trends reported in Weber et al. (2018) using the same datasets up to 2016. Merged datasets used in this study include NASA MOD v8.7 and NOAA Cohesive Data (COH) v8.6, both based on data from the series of Solar Backscatter Ultraviolet (SBUV), SBUV-2, and Ozone Mapping and Profiler Suite (OMPS) satellite instruments (1978–present), as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone – Essential Climate Variable (GTO-ECV) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (both 1995–present), mainly comprising satellite data from GOME, SCIAMACHY, OMI, GOME-2A, GOME-2B, and TROPOMI. The fifth dataset consists of the annual mean zonal mean data from ground-based measurements collected at the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. The addition of 4 more years consolidated the fact that total ozone is indeed slowly recovering in both hemispheres as a result of phasing out ozone-depleting substances (ODSs) as mandated by the Montreal Protocol. The near-global (60° S–60° N) ODS-related ozone trend of the median of all datasets after 1995 was 0.4 ± 0.2 (2σ) %/decade, which is roughly a third of the decreasing rate of 1.5 ± 0.6 %/decade from 1978 until 1995. The ratio of decline and increase is nearly identical to that of the EESC (equivalent effective stratospheric chlorine or stratospheric halogen) change rates before and after 1995, confirming the success of the Montreal Protocol. The observed total ozone time series are also in very good agreement with the median of 17 chemistry climate models from CCMI-1 (Chemistry-Climate Model Initiative Phase 1) with current ODS and GHG (greenhouse gas) scenarios (REF-C2 scenario). The positive ODS-related trends in the Northern Hemisphere (NH) after 1995 are only obtained with a sufficient number of terms in the MLR accounting properly for dynamical ozone changes (Brewer–Dobson circulation, Arctic Oscillation (AO), and Antarctic Oscillation (AAO)). A standard MLR (limited to solar, Quasi-Biennial Oscillation (QBO), volcanic, and El Niño–Southern Oscillation (ENSO)) leads to zero trends, showing that the small positive ODS-related trends have been balanced by negative trend contributions from atmospheric dynamics, resulting in nearly constant total ozone levels since 2000.