Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
470 result(s) for "Osteocytes - cytology"
Sort by:
Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation
According to current dogma, chondrocytes and osteoblasts are considered independent lineages derived from a common osteochondroprogenitor. In endochondral bone formation, chondrocytes undergo a series of differentiation steps to form the growth plate, and it generally is accepted that death is the ultimate fate of terminally differentiated hypertrophic chondrocytes (HCs). Osteoblasts, accompanying vascular invasion, lay down endochondral bone to replace cartilage. However, whether an HC can become an osteoblast and contribute to the full osteogenic lineage has been the subject of a century-long debate. Here we use a cell-specific tamoxifen-inducible genetic recombination approach to track the fate of murine HCs and show that they can survive the cartilage-to-bone transition and become osteogenic cells in fetal and postnatal endochondral bones and persist into adulthood. This discovery of a chondrocyte-to-osteoblast lineage continuum revises concepts of the ontogeny of osteoblasts, with implications for the control of bone homeostasis and the interpretation of the underlying pathological bases of bone disorders.
Relevance of Notch Signaling for Bone Metabolism and Regeneration
Notch1-4 receptors and their signaling pathways are expressed in almost all organ systems and play a pivotal role in cell fate decision by coordinating cell proliferation, differentiation and apoptosis. Differential expression and activation of Notch signaling pathways has been observed in a variety of organs and tissues under physiological and pathological conditions. Bone tissue represents a dynamic system, which is constantly remodeled throughout life. In bone, Notch receptors have been shown to control remodeling and regeneration. Numerous functions have been assigned to Notch receptors and ligands, including osteoblast differentiation and matrix mineralization, osteoclast recruitment and cell fusion and osteoblast/osteoclast progenitor cell proliferation. The expression and function of Notch1-4 in the skeleton are distinct and closely depend on the temporal expression at different differentiation stages. This review addresses the current knowledge on Notch signaling in adult bone with emphasis on metabolism, bone regeneration and degenerative skeletal disorders, as well as congenital disorders associated with mutant Notch genes. Moreover, the crosstalk between Notch signaling and other important pathways involved in bone turnover, including Wnt/β-catenin, BMP and RANKL/OPG, are outlined.
Cell Death in Chondrocytes, Osteoblasts, and Osteocytes
Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced.
Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish
Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.
Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway
Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANK:OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.
Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders ( P  = 2.4 × 10 −22 ) and are associated with the polygenic diseases osteoporosis ( P  = 1.8 × 10 −13 ) and osteoarthritis ( P  = 1.6 × 10 −7 ). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease. Osteocytes are the master regulatory cells within the skeleton. Here, the authors map the transcriptome of osteocytes from diverse skeletal sites, ages and between sexes and identify an osteocyte transcriptome signature associated with rare skeletal disorders and common complex skeletal diseases.
Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice
The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis.
Exosomes derived from Wharton's jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway
: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease after long-term or high-dose glucocorticoid use. The pathogenesis of GIONFH is still controversial, and abnormal bone metabolism caused by glucocorticoids may be one of the important factors. Exosomes, owing to their positive effect on bone repair, show promising therapeutic effects on bone-related diseases. In this study, we hypothesised that exosomes reduce osteocyte apoptosis in rat GIONFH via the miR-21-PTEN-AKT signalling pathway. : To evaluate the effects of exosomes in GIONFH, a dexamethasone-treated or exosome-treated cell model and a methylprednisolone-treated rat model were set up. , a CCK-8 assay and 5-ethynyl-2'-deoxyuridine staining were performed to evaluate the proliferation of osteocytes. Further, a terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, annexin V-fluorescein isothiocyanate-propidium iodide staining, and western blotting were conducted to evaluate the apoptosis of osteocytes. , we used micro-computed tomography and histological and immunohistochemical analyses to assess the effects of exosomes. Moreover, the mechanism of exosome action on osteocyte apoptosis through the miR-21-PTEN-AKT pathway was investigated by high-throughput RNA sequencing, fluorescence in situ hybridisation, luciferase reporter assays, and western blotting. : High-throughput RNA sequencing results showed that the AKT signalling pathway was up-regulated in the exosome group. Quantitative PCR and western blotting confirmed that the relative expression of genes in the AKT pathway was up-regulated. Western blotting revealed that AKT activated by exosomes inhibited osteocyte apoptosis. RNA fluorescence in situ hybridisation and luciferase reporter assays were performed to confirm the interaction between miR-21 and PTEN. According to the experiment , exosomes prevented GIONFH in a rat model as evidenced by micro-computed tomography scanning and histological and immunohistochemical analyses. : Exosomes are effective at inhibiting osteocyte apoptosis (in MLO-Y4 cells) and at preventing rat GIONFH. These beneficial effects are mediated by the miR-21-PTEN-AKT signalling pathway.
IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In Vitro
Background/Aims: Evidence suggests that IL-6 affects bone mass by modulating osteocyte communication towards osteoclasts. However, the mechanism by which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. We aimed to investigate the inflammatory factors in serum after orthodontic surgery and their relationship between osteocytes and osteoclasts. Methods: Serum was obtained from 10 orthognathic surgery patients, and inflammatory factors were detected by ELISA. We treated the osteocyte-like cell line MLO-Y4 with recombinant mouse IL-6 and IL-6 receptor (IL-6R), and used quantitative RT-PCR and Western blotting to explore Receptor activator of nuclear factor-κB ligand (RANKL) expression at both the mRNA and protein level. MLO-Y4 cells were co-cultured with osteoclast precursor cells, and the formation of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. To explore the role of JAK2 in the osteocyte-mediated osteoclastogenesis, AG490, a JAK2 inhibitor, was used to inhibit the JAK2-STAT3 pathway in osteocytes. Results: In our study, we found that IL-6 and RANKL were stimulated in serum 3-7 days after orthognathic surgery. Therefore, IL-6 and IL-6 receptor enhanced the expression of RANKL at both the mRNA and protein level in MLO-Y4. Furthermore, when MLO-Y4 cells were co-cultured with osteoclast precursor cells, it significantly stimulated osteoclastogenesis. Our study indicated that osteocytes could promote osteoclastic differentiation and the formation of TRAP-positive multinucleated cells after stimulation with IL-6 and IL-6R. Our results also indicated that treatment with IL-6 and IL-6R increased RANKL mRNA expression and the RANKL/OPG expression ratio. Meanwhile, the phosphorylation of Janus kinase 2 (JAK2) and Signal transducer and activator of transcription (STAT3) also correlated with RANKL levels. Furthermore, we investigated the effects of a specific JAK2 inhibitor, AG490, on the expression of RANKL in osteocyte-like MLO-Y4 cells and osteocyte-mediated osteoclastogenesis. The results showed that AG490 inhibited (p)-JAK2 and RANKL expression. Osteoclastic differentiation was decreased after pretreatment in MLO-Y4 with mouse IL-6/IL-6R and AG490; therefore, we concluded that IL-6 increased osteocyte-mediated osteoclastic differentiation by activating JAK2 and RANKL. Conclusion: The effects of IL-6/il-6R and AG490 on osteocyte-mediated osteoclastogenesis contribute to our understanding of the role of inflammatory factors in the interaction between osteocytes and osteoclast precursors. IL-6 and RANKL are key factors for bone remodelling after the orthodontic surgery, and their roles in bone remodelling may be fundamental mechanisms accelerating tooth movement by orthodontic surgery.
Age is just a number: Examining the preservation of cells and soft tissues in Bothriolepis and other Devonian fish
Recent microscopy and proteomic studies demonstrate fossil bones can preserve remarkable palimpsests of cellular and soft tissue evolution, yet it remains unclear if there are temporal limits to such preservation. For instance, it remains unknown if fossil cells and soft tissues can be recovered from fossil bones of the earliest vertebrates from the middle Paleozoic. To test this, we demineralized nine bone fragments of Bothriolepis and other Late Devonian fish. Removal of phosphates from the fossils released numerous microstructures morphologically consistent with vertebrate osteocytes, pieces of blood vessels, and sheets of fibrous bone matrix which were frequently found to exhibit elemental chemistry potentially indicative of partial organic composition. These discoveries extend this style of exceptional preservation to aspidin and dentine and predate all prior reports of similar cellular/soft-tissue preservation in fossil bones by nearly 100 million years, indicating that the geologic age of a fossil specimen is a poor predictor of whether or not it will retain potentially-endogenous microstructures. Thus, the preservation pathways leading to these forms of soft-tissue fossilization likely began contemporaneously with the evolution of vascularized cellular bone in the early Paleozoic.