Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
376 result(s) for "Oxalates - blood"
Sort by:
Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1
Primary hyperoxaluria type 1 is caused by hepatic overproduction of oxalate, leading to kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. This trial tested whether an oligonucleotide drug can reduce the production of hepatic oxalate.
Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress
Chronic hemodialysis (HD) patients manifest anemia and atherosclerosis with associated oxidative stress. We explored whether intravenous infusion of vitamin C (VC) and/or use of vitamin E (VE)-coated dialysis membrane could palliate HD-evoked oxidative stress. Eighty patients undergoing chronic HD were enrolled and randomly assigned into four groups: HD with intravenous VC (n=20), HD with VE-coated dialyzer (n=20), HD with both (n=20), and HD with neither (n=20). We evaluated oxidative stress in blood and plasma, erythrocyte methemoglobin/ferricyanide reductase (red blood cells (RBC)-MFR) activity, plasma methemoglobin, and pro-inflammatory cytokines in these patients. All patients showed marked increases (14-fold) in blood reactive oxygen species (ROS) after HD. The types of ROS were mostly hydrogen peroxide, and in lesser amounts, O2•− and HOCl. HD resulted in decreased plasma VC, total antioxidant status, and RBC-MFR activity and increased plasma and erythrocyte levels of phosphatidylcholine hydroperoxide (PCOOH) and methemoglobin. Intravenous VC significantly palliated HD-induced oxidative stress, plasma and RBC levels of PCOOH, and plasma methemoglobin levels and preserved RBC-MFR activity. The VE-coated dialyzer effectively prevented RBCs from oxidative stress, although it showed a partial effect on the reduction of total ROS activity in whole blood. In conclusion, intravenous VC plus a VE-coated dialyzer is effective in palliating HD-evoked oxidative stress, as indicated by hemolysis and lipid peroxidation, and by overexpression of proinflammation cytokines in HD patients. Using VE-coated dialyzer per se is, however, effective in reducing lipid peroxidation and oxidative damage to RBCs.
Intestinal and renal handling of oxalate loads in normal individuals and stone formers
The renal handling and intestinal absorption of dietary oxalate are believed to be risk factors for calcium oxalate stone formation. In this study, we have examined the time and dose effects of soluble oxalate loads on the intestinal absorption and renal handling of oxalate in six stone formers (SF) and six normal individuals (N) who consumed diets controlled in oxalate and other nutrients. Urinary and plasma oxalate changes were monitored over 24 h after ingestion of 0, 2, 4, and 8 mmole oxalate loads, containing a mixture of (12)C- and (13)C(2)-oxalate. There were significant time and dose dependent changes in urinary oxalate excretion and secretion after these loads. However, there were no significant differences between SF and N in both the intestinal absorption and the renal handling of oxalate loads, as measured by the urinary excretion of oxalate (P = 0.96) and the ratio of oxalate to creatinine clearance (P = 0.34). (13)C(2)-oxalate absorption studies showed three of the subjects, two SF and one N, had enhanced absorption with the 8 mmole load. A clear difference in absorption was demonstrated in these individuals during the 8-24 h interval, suggesting that in these individuals there was greater oxalate absorption in the large intestine as compared to the other subjects. This enhanced absorption of oxalate warrants further characterization.
The role of Oxalobacter formigenes colonization in calcium oxalate stone disease
About 75% of urinary stones contain oxalate. As Oxalobacter formigenes is a Gram-negative anaerobic bacterium that degrades oxalate in the intestinal tract, we assessed the role of O. formigenes in oxalate metabolism by evaluating its intestinal absorption, plasma concentration, and urinary excretion. Of 37 calcium oxalate stone formers, 26 tested negative for O. formigenes and were compared with the 11 patients who tested positive. Patients provided 24-h urine samples on both a self-selected and a standardized diet. Urinary oxalate excretion did not differ significantly on the self-selected diet, but was significantly lower in O. formigenes-positive than in O. formigenes-negative patients under controlled, standardized conditions. Intestinal oxalate absorption, measured using [13C2]oxalate, was similar in the patients with or without O. formigenes. Plasma oxalate concentrations were significantly higher in noncolonized (5.79μmol/l) than in colonized stone formers (1.70μmol/l). Colonization with O. formigenes was significantly inversely associated with the number of stone episodes. Our findings suggest that O. formigenes lowers the intestinal concentration of oxalate available for absorption at constant rates, resulting in decreased urinary oxalate excretion. Thus, dietary factors have an important role in urinary oxalate excretion. The data indicate that O. formigenes colonization may reduce the risk of stone recurrence.
A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria
Primary hyperoxaluria (PH) patients overproduce oxalate because of rare genetic errors in glyoxylate metabolism. Recurrent urolithiasis and/or progressive nephrocalcinosis are PH hallmarks and can lead to kidney damage, systemic oxalosis and death. Based on previous studies, we hypothesised that treatment with the oxalate-metabolizing bacterium Oxalobacter formigenes would mediate active elimination of oxalate from the plasma to the intestine of PH patients, thereby reducing urinary oxalate excretion (Uox). The efficacy and safety of O. formigenes (Oxabact™ OC3) were evaluated for 24 weeks in a randomised, placebo-controlled, double-blind study. The primary endpoint was reduction in Uox. Secondary endpoints included change in plasma oxalate (Pox) concentration, frequency of stone events, number of responders, and Uox in several subgroups. Additional post hoc analyses were conducted. Thirty-six patients were randomised; two patients withdrew from placebo treatment. Both OC3 and placebo groups demonstrated a decrease in Uox/urinary creatinine ratio, but the difference was not statistically significant. No differences were observed with respect to change in Pox concentration, stone events, responders’ number or safety measures. In patients with estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2, Pox increased by 3.25 µmol/L in the placebo group and decreased by −1.7 µmol/L in the OC3 group (p = 0.13). After 24 weeks, eGFR had declined to a greater degree in the placebo than in the OC3 group: −8.00 ± 2.16 versus −2.71 ± 2.50; p = 0.01. OC3 treatment did not reduce urinary oxalate over 24 weeks of treatment compared with placebo in patients with PH. The treatment was well tolerated.
Plasma Oxalate as a Predictor of Kidney Function Decline in a Primary Hyperoxaluria Cohort
This retrospective analysis investigated plasma oxalate (POx) as a potential predictor of end-stage kidney disease (ESKD) among primary hyperoxaluria (PH) patients. PH patients with type 1, 2, and 3, age 2 or older, were identified in the Rare Kidney Stone Consortium (RKSC) PH Registry. Since POx increased with falling estimated glomerular filtration rate (eGFR), patients were stratified by chronic kidney disease (CKD) subgroups (stages 1, 2, 3a, and 3b). POx values were categorized into quartiles for analysis. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for risk of ESKD were estimated using the Cox proportional hazards model with a time-dependent covariate. There were 118 patients in the CKD1 group (nine ESKD events during follow-up), 135 in the CKD 2 (29 events), 72 in CKD3a (34 events), and 45 patients in CKD 3b (31 events). During follow-up, POx Q4 was a significant predictor of ESKD compared to Q1 across CKD2 (HR 14.2, 95% CI 1.8–115), 3a (HR 13.7, 95% CI 3.0–62), and 3b stages (HR 5.2, 95% CI 1.1–25), p < 0.05 for all. Within each POx quartile, the ESKD rate was higher in Q4 compared to Q1–Q3. In conclusion, among patients with PH, higher POx concentration was a risk factor for ESKD, particularly in advanced CKD stages.
Interleukin-16 is increased in dialysis patients but is not a cardiovascular risk factor
Oxalate, a uremic toxin that accumulates in dialysis patients, is associated with cardiovascular disease. As oxalate crystals can activate immune cells, we tested the hypothesis that plasma oxalate would be associated with cytokine concentrations and cardiovascular outcomes in dialysis patients. In a cohort of 104 US patients with kidney failure requiring dialysis (cohort 1), we measured 21 inflammatory markers. As IL-16 was the only cytokine to correlate with oxalate, we focused further investigations on IL-16. We searched for associations between concentrations of IL-16 and mortality and cardiovascular events in the 4D cohort (1255 patients, cohort 2) and assessed further associations of IL-16 with other uremic toxins in this cohort. IL-16 levels were positively correlated with pOx concentrations ( ρ  = 0.39 in cohort 1, r = 0.35 in cohort 2) and were elevated in dialysis patients when compared to healthy individuals. No significant association could be found between IL-16 levels and cardiovascular events or mortality in the 4D cohort. We conclude that the cytokine IL-16 correlates with plasma oxalate concentrations and is substantially increased in patients with kidney failure on dialysis. However, no association could be detected between IL-16 concentrations and cardiovascular disease in the 4D cohort.
Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion
The primary goal of this study was to test the hypothesis that Oxalobacter colonization alters colonic oxalate transport thereby reducing urinary oxalate excretion. In addition, we examined the effects of intraluminal calcium on Oxalobacter colonization and tested the hypothesis that endogenously derived colonic oxalate could be degraded by lyophilized Oxalobacter enzymes targeted to this segment of the alimentary tract. Oxalate fluxes were measured across short-circuited, in vitro preparations of proximal and distal colon removed from Sprague–Dawley rats and placed in Ussing chambers. For these studies, rats were colonized with Oxalobacter either artificially or naturally, and urinary oxalate, creatinine and calcium excretions were determined. Colonized rats placed on various dietary treatment regimens were used to evaluate the impact of calcium on Oxalobacter colonization and whether exogenous or endogenous oxalate influenced colonization. Hyperoxaluric rats with some degree of renal insufficiency were also used to determine the effects of administering encapsulated Oxalobacter lysate on colonic oxalate transport and urinary oxalate excretion. We conclude that in addition to its intraluminal oxalate-degrading capacity, Oxalobacter interacts physiologically with colonic mucosa by inducing enteric oxalate secretion/excretion leading to reduced urinary excretion. Whether Oxalobacter, or products of Oxalobacter, can therapeutically reduce urinary oxalate excretion and influence stone disease warrants further investigation in long-term studies in various patient populations.
Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1
Primary hyperoxaluria is characterized by severe urolithiasis, nephrocalcinosis, and early renal failure. As treatment options are scarce, we aimed for a new therapeutic tool using colonic degradation of endogenous oxalate by Oxalobactor formigenes. Oxalobacter was orally administered for 4 weeks as frozen paste (IxOC-2) or as enteric-coated capsules (IxOC-3). Nine patients (five with normal renal function, one after liver–kidney transplantation, and three with renal failure) completed the IxOC-2 study. Seven patients (six with normal renal function and one after liver–kidney transplantation) completed the IxOC-3 study. Urinary oxalate or plasma oxalate in renal failure was determined at baseline, weekly during treatment and for a 2-week follow-up. The patients who showed >20% reduction both at the end of weeks 3 and 4 were considered as responders. Under IxOC-2, three out of five patients with normal renal function showed a 22–48% reduction of urinary oxalate. In addition, two renal failure patients experienced a significant reduction in plasma oxalate and amelioration of clinical symptoms. Under IxOC-3 treatment, four out of six patients with normal renal function responded with a reduction of urinary oxalate ranging from 38.5 to 92%. Although all subjects under IxOC-2 and 4 patients under IxOC-3 showed detectable levels of O. formigenes in stool during treatment, fecal recovery dropped directly at follow up, indicating only transient gastrointestinal-tract colonization. The preliminary data indicate that O. formigenes is safe, leads to a significant reduction of either urinary or plasma oxalate, and is a potential new treatment option for primary hyperoxaluria.
Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6
Urolithiasis is one of the most common urologic diseases in industrialized societies. Calcium oxalate is the predominant component in 70–80% of kidney stones 1 , and small changes in urinary oxalate concentration affect the risk of stone formation 2 . SLC26A6 is an anion exchanger expressed on the apical membrane in many epithelial tissues, including kidney and intestine 3 , 4 , 5 , 6 . Among its transport activities, SLC26A6 mediates Cl − -oxalate exchange 5 , 6 , 7 , 8 , 9 . Here we show that mutant mice lacking Slc26a6 develop a high incidence of calcium oxalate urolithiasis. Slc26a6-null mice have significant hyperoxaluria and elevation in plasma oxalate concentration that is greatly attenuated by dietary oxalate restriction. In vitro flux studies indicated that mice lacking Slc26a6 have a defect in intestinal oxalate secretion resulting in enhanced net absorption of oxalate. We conclude that the anion exchanger SLC26A6 has a major constitutive role in limiting net intestinal absorption of oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis.