Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,076 result(s) for "Oxidation Environmental aspects."
Sort by:
Advanced oxidation technologies : sustainable solutions for environmental treatments
Providing a state-of-the-art overview on environmental applications of Advanced Oxidation Technologies (AOTs) as sustainable, low-cost and low-energy consuming treatments of water, air, and soil. It includes information on innovative research and development on TiO2 photocatalytic redox processes, Fenton, Photo-Fenton processes, zerovalent iron technology, etc highlighting possible applications of ATOs in developing and industrialized countries around the world in the framework of 'A crosscutting and comprehensive look at environmental problems'.
Soil respiration and the environment
The global environment is constantly changing and our planet is getting warmer at an unprecedented rate. The study of the carbon cycle, and soil respiration, is a very active area of research internationally because of its relationship to climate change. It is crucial for our understanding of ecosystem functions from plot levels to global scales. Although a great deal of literature on soil respiration has been accumulated in the past several years, the material has not yet been synthesized into one place until now. This book synthesizes the already published research findings and presents the fundamentals of this subject. Including information on global carbon cycling, climate changes, ecosystem productivity, crop production, and soil fertility, this book will be of interest to scientists, researchers, and students across many disciplines. * A key reference for the scientific community on global climate change, ecosystem studies, and soil ecology* Describes the myriad ways that soils respire and howthis activity influences the environment* Covers a breadth of topics ranging from methodologyto comparative analyses of different ecosystem types* The first existing \"treatise\" on the subject
mechanisms of atmospheric oxidation of the oxygenates
Prepared by an international team of eminent atmospheric scientists, \"Mechanisms of Atmospheric Oxidation of the Oxygenates\" is an authoritative source of information on the role of oxygenates in the chemistry of the atmosphere.
Advanced Oxidation Technologies
Providing a state-of-the-art overview on environmental applications of Advanced Oxidation Technologies (AOTs) as sustainable, low-cost and low-energy consuming treatments of water, air, and soil. It includes information on innovative research and development on TiO2 photocatalytic redox processes, Fenton, Photo-Fenton processes, zerovalent iron technology, etc highlighting possible applications of ATOs in developing and industrialized countries around the world in the framework of \"A crosscutting and comprehensive look at environmental problems\". Advanced Oxidation Technologies (AOTs) or Processes (AOPs) are relatively new and innovative technologies to remove harmful and toxic pollutants. The most important processes among them are those using light, such as UVC/H2O2, photo-Fenton and heterogeneous photocatalysis with TiO2. These technologies are also relatively low-cost and therefore useful for countries under development, where the economical resources are less scarce than in developed countries.
Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview
In this work, the application of advanced oxidation processes (AOPs) for the removal of antibiotics from water has been reviewed. The present concern about water has been exposed, and the main problems derived from the presence of emerging pollutants have been analyzed. Photolysis processes, ozone-based AOPs including ozonation, O3/UV, O3/H2O2, and O3/H2O2/UV, hydrogen peroxide-based methods (i.e., H2O2/UV, Fenton, Fenton-like, hetero-Fenton, and photo-Fenton), heterogeneous photocatalysis (TiO2/UV and TiO2/H2O2/UV systems), and sonochemical and electrooxidative AOPs have been reviewed. The main challenges and prospects of AOPs, as well as some recommendations for the improvement of AOPs aimed at the removal of antibiotics from wastewaters, are pointed out.
Genome-centric metagenomic insights into the role of Chloroflexi in anammox, activated sludge and methanogenic reactors
Background The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. Results Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus ‘Ca. Villigracilis’. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. Conclusion Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.
Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6
Acidimicrobiaceae sp. A6 (ATCC, PTA-122488), a strain that has been previously reported to play a key role in the oxidation of ammonium (NH4+) under iron reducing conditions, has now been isolated from riparian wetland soils in New Jersey, USA. Incubations of this strain in a medium containing ferrihydrite as the ferric iron [Fe(III)] source, CO2 as the carbon source, under room temperature, and a pH of 4.5, resulted in 52% of NH4+ removal over a 20-day incubation period, while reducing Fe(III) in the expected stoichiometric ratio when NH4+ was oxidized to nitrite with Fe(III) as the electron acceptor. This study demonstrates that this new isolated strain is capable of oxidizing NH4+ while reducing iron under anaerobic conditions.
Prospects for microbiological solutions to environmental pollution with plastics
Synthetic polymers, commonly named plastics, are among the most widespread anthropogenic pollutants of marine, limnic and terrestrial ecosystems. Disruptive effects of plastics are known to threaten wildlife and exert effects on natural food webs, but signs for and knowledge on plastic biodegradation are limited. Microorganisms are the most promising candidates for an eventual bioremediation of environmental plastics. Laboratory studies have reported various effects of microorganisms on many types of polymers, usually by enzymatic hydrolysis or oxidation. However, most common plastics have proved to be highly recalcitrant even under conditions known to favour microbial degradation. Knowledge on environmental degradation is yet scarcer. With this review, we provide a comprehensive overview of the current knowledge on microbiological degradation of several of the most common plastic types. Furthermore, we illustrate the analytical challenges concerning the evaluation of plastic biodegradation as well as constraints likely standing against the evolution of effective biodegradation pathways.
Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean
Water stress (WS) and heat stress (HS) have a negative effect on soybean plant growth and crop productivity. Changes in the physiological characteristics, proteome, and specific metabolites investigated on molecular and cellular functions were studied in two soybean cultivars exposed to different heat and water stress conditions independently and in combination. Leaf protein composition was studied using 2-DE and complemented with MALDI TOF mass spectrometry. While the two cultivars displayed genetic variation in response to water and heat stress, thirty-nine proteins were significantly altered in their relative abundance in response to WS, HS and combined WS+HS in both cultivars. A majority of these proteins were involved in metabolism, response to heat and photosynthesis showing significant cross-tolerance mechanisms. This study revealed that MED37C, a probable mediator of RNA polymerase transcription II protein, has potential interacting partners in Arabidopsis and signified the marked impact of this on the PI-471938 cultivar. Elevated activities in antioxidant enzymes indicate that the PI-471938 cultivar can restore the oxidation levels and sustain the plant during the stress. The discovery of this plant's development of cross-stress tolerance could be used as a guide to foster ongoing genetic modifications in stress tolerance.
DMS oxidation and sulfur aerosol formation in the marine troposphere: a focus on reactive halogen and multiphase chemistry
The oxidation of dimethyl sulfide (DMS) in the troposphere and subsequent chemical conversion into sulfur dioxide (SO2) and methane sulfonic acid (MSA) are key processes for the formation and growth of sulfur-containing aerosol and cloud condensation nuclei (CCN), but are highly simplified in large-scale models of the atmosphere. In this study, we implement a series of gas-phase and multiphase sulfur oxidation mechanisms into the Goddard Earth Observing System-Chemistry (GEOS-Chem) global chemical transport model – including two important intermediates, dimethyl sulfoxide (DMSO) and methane sulphinic acid (MSIA) – to investigate the sulfur cycle in the global marine troposphere. We found that DMS is mainly oxidized in the gas phase by OH (66 %), NO3 (16 %) and BrO (12 %) globally. DMS + BrO is important for the model's ability to reproduce the observed seasonality of surface DMS mixing ratio in the Southern Hemisphere. MSA is mainly produced from multiphase oxidation of MSIA by OH(aq) (66 %) and O3(aq) (30 %) in cloud droplets and aerosols. Aqueous-phase reaction with OH accounts for only 12 % of MSA removal globally, and a higher MSA removal rate is needed to reproduce observations of the MSA ∕ nssSO42- ratio. The modeled conversion yield of DMS into SO2 and MSA is 75 % and 15 %, respectively, compared to 91 % and 9 % in the standard model run that includes only gas-phase oxidation of DMS by OH and NO3. The remaining 10 % of DMS is lost via deposition of intermediates DMSO and MSIA. The largest uncertainties for modeling sulfur chemistry in the marine boundary layer (MBL) are unknown concentrations of reactive halogens (BrO and Cl) and OH(aq) concentrations in cloud droplets and aerosols. To reduce uncertainties in MBL sulfur chemistry, we should prioritize observations of reactive halogens and OH(aq).