Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Oxocins - chemistry"
Sort by:
Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions
Pentoses and hexoses contain more than three oxygen-bearing stereocentres and are ideal starting materials for the synthesis of multiply oxygenated natural products such as sagittamide D, maitotoxin and hikizimycin. Here we demonstrate new radical–radical homocoupling reactions of sugar derivatives with minimal perturbation of their chiral centres. The radical exchange procedure using Et 3 B/O 2 converted sugar-derived α-alkoxyacyl tellurides into α-alkoxy radicals via decarbonylation and rapidly dimerized the monomeric radicals. The robustness of this process was demonstrated by a single-step preparation of 12 stereochemically diverse dimers with 6–10 secondary hydroxy groups, including the C5–C10 stereohexad of sagittamide D and the enantiomer of the C51–C60 stereodecad of maitotoxin. Furthermore, the optimally convergent radical–radical cross-coupling reaction achieved a one-step assembly of the protected C1–C11 oxygenated carbon chain of the anthelmintic hikizimycin. These exceptionally efficient homo- and heterocoupling methods together provide a powerful strategy for the expedited total synthesis of contiguously hydroxylated natural products. Pentoses and hexoses represent important structural motifs in bioactive secondary metabolites, though their synthesis often requires several elongation steps. Now, a method for radical–radical coupling reactions of sugar derivatives enables the single-step preparation of the oxygenated carbon chains of several natural products, including sagittamide D, maitotoxin and hikizimycin.
Toxicological and Pharmacological Activities, and Potential Medical Applications, of Marine Algal Toxins
Marine algal toxins have garnered significant attention in the research community for their unique biochemical properties and potential medical applications. These bioactive compounds, produced by microalgae, pose significant risks due to their high toxicity, yet offer promising therapeutic benefits. Despite extensive research identifying over 300 marine algal toxins, including azaspiracids, brevetoxins, cyclic imines, and yessotoxins, gaps remain in the understanding of their pharmacological potential. In this paper, we critically review the classification, bioactive components, toxicology, pharmacological activities, and mechanisms of these toxins, with a particular focus on their clinical applications. Our motivation stems from the increasing interest in marine algal toxins as candidates for drug development, driven by their high specificity and affinity for various biological receptors. We aim to bridge the gap between toxicological research and therapeutic application, offering insights into the advantages and limitations of these compounds in comparison to other bioactive substances. This review not only enhances the understanding of marine algal toxins’ complexity and diversity, but also highlights their extensive application potential in medicine and bioscience, providing a foundation for future research and development in this field.
Chemodiversity of Brevetoxins and Other Potentially Toxic Metabolites Produced by Karenia spp. and Their Metabolic Products in Marine Organisms
In recent decades, more than 130 potentially toxic metabolites originating from dinoflagellate species belonging to the genus Karenia or metabolized by marine organisms have been described. These metabolites include the well-known and large group of brevetoxins (BTXs), responsible for foodborne neurotoxic shellfish poisoning (NSP) and airborne respiratory symptoms in humans. Karenia spp. also produce brevenal, brevisamide and metabolites belonging to the hemi-brevetoxin, brevisin, tamulamide, gymnocin, gymnodimine, brevisulcenal and brevisulcatic acid groups. In this review, we summarize the available knowledge in the literature since 1977 on these various identified metabolites, whether they are produced directly by the producer organisms or biotransformed in marine organisms. Their structures and physicochemical properties are presented and discussed. Among future avenues of research, we highlight the need for more toxin occurrence data with analytical techniques, which can specifically determine the analogs present in samples. New metabolites have yet to be fully described, especially the groups of metabolites discovered in the last two decades (e.g tamulamides). Lastly, this work clarifies the different nomenclatures used in the literature and should help to harmonize practices in the future.
Efficient Synthesis of Fused Polycyclic Ether Systems via Sulfonium Ylides: A Synthetic Approach to Yessotoxin and Adriatoxin
A novel class of chiral sulfonium salts, derived from L- and D-methionine, was designed and successfully employed for the diastereoselective synthesis of epoxy amides. This new methodology of asymmetric epoxidation was exploited for the stereoselective construction of fused polycyclic ethers, which are structural motifs present in a great variety of natural products of marine origin. This methodology proved to be useful for the synthesis of the tricyclic A–C system contained in yessotoxin and adriatoxin, and also in many other related natural products of marine origin belonging to the fused polycyclic ether toxins.
Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus
Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.
Neurotoxic Shellfish Poisoning
Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented.
Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM). In parallel, complementary DNA (cDNA) sequences specific to each aptamer were conjugated to a fluorescence quencher BHQ1. In the absence of the target, an aptamer–cDNA duplex structure is formed, and the fluorescence is quenched. By adding the toxin, the aptamer tends to bind to its target and releases the cDNA. The fluorescence intensity is consequently restored after the formation of the complex aptamer–toxin, where the fluorescence recovery is directly correlated with the analyte concentration. Based on this principle, a highly sensitive detection of the six marine toxins was achieved, with the limits of detection of 0.15, 0.06, 0.075, 0.027, 0.041, and 0.026 nM for microcystin-LR, anatoxin-α, saxitoxin, cylindrospermopsin, okadaic acid, and brevetoxin, respectively. Moreover, each aptameric assay showed a very good selectivity towards the other five marine toxins. Finally, the developed technique was applied for the detection of the six toxins in spiked water samples with excellent recoveries.
Toxicity Screening of a Gambierdiscus australes Strain from the Western Mediterranean Sea and Identification of a Novel Maitotoxin Analogue
Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.
Monitoring the Emergence of Algal Toxins in Shellfish: First Report on Detection of Brevetoxins in French Mediterranean Mussels
In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.
Yessotoxins, a group of marine polyether toxins: an overview
Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition of protein phosphatases. In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.