Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14,616
result(s) for
"P protein"
Sort by:
The role of AtPP2-A3 and AtPP2-A8 genes encoding Nictaba-related lectin domains in the defense response of Arabidopsis thaliana to Heterodera schachtii
by
Sobczak, Mirosław
,
Krępski, Tomasz
,
Różańska, Elżbieta
in
Arabidopsis thaliana
,
Coding
,
Gene expression
2023
Main conclusionExpression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite.Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.
Journal Article
Non‐ribosomal insights into ribosomal P2 protein in Plasmodium falciparum‐infected erythrocytes
2021
The enormous complexity of the eukaryotic ribosome has been a real challenge in unlocking the mechanistic aspects of its amazing molecular function during mRNA translation and many non‐canonical activities of ribosomal proteins in eukaryotic cells. While exploring the uncanny nature of ribosomal P proteins in malaria parasites Plasmodium falciparum, the 60S stalk ribosomal P2 protein has been shown to get exported to the infected erythrocyte (IE) surface as an SDS‐resistant oligomer during the early to the mid‐trophozoite stage. Inhibiting IE surface P2 either by monoclonal antibody or through genetic knockdown resulted in nuclear division arrest of the parasite. This strange and serendipitous finding has led us to explore more about un‐canonical cell biology and the structural involvement of P2 protein in Plasmodium in the search for a novel biochemical role during parasite propagation in the human host. In malaria parasites, the 60S ribosomal stalk protein P2 translocates to the infected red blood cell surface and is potentially involved in the regulation of parasite nuclear division.
Journal Article
Immunogenicity and Blocking Efficacy of Norovirus GII.4 Recombinant P Protein Vaccine
2023
Noroviruses (NoVs) are the main cause of acute gastroenteritis in all ages worldwide. The aim of this study was to produce the recombinant P protein of norovirus and to demonstrate its blocking effect. In this study, the engineered strains were induced to express the P protein of NoVs GII.4, which was identified using SDS-PAGE and ELISA as having the capacity to bind to histo-blood group antigens (HBGAs). Rabbits were immunized to obtain neutralizing antibodies. ELISA and ISC-RT-qPCR were used to determine the blocking efficacy of the neutralizing antibody to human norovirus (HuNoV) and murine norovirus (MNV). The recombinant P protein (35 KD) was obtained, and the neutralizing antibody was successfully prepared. The neutralizing antibody could block the binding of the P protein and HuNoV to HBGAs. Neutralizing antibodies can also block MNV invasion into host cells RAW264.7. The recombinant P protein expressed in E. coli can induce antibodies to block HuNoV and MNV. The recombinant P protein of NoVs GII.4 has the value of vaccine development.
Journal Article
Non-dispersive phloem-protein bodies (NPBs) of Populus trichocarpa consist of a SEOR protein and do not respond to cell wounding and Ca2
2018
Differentiating sieve elements in the phloem of angiosperms produce abundant phloem-specific proteins before their protein synthesis machinery is degraded. These P-proteins initially form dense bodies, which disperse into individual filaments when the sieve element matures. In some cases, however, the dense protein agglomerations remain intact and are visible in functional sieve tubes as non-dispersive P-protein bodies, or NPBs. Species exhibiting NPBs are distributed across the entire angiosperm clade. We found that NPBs in the model tree, Populus trichocarpa, resemble the protein bodies described from other species of the order Malpighiales as they all consist of coaligned tubular fibrils bundled in hexagonal symmetry. NPBs of all Malpighiales tested proved unresponsive to sieve tube wounding and Ca2+. The P. trichocarpa NPBs consisted of a protein encoded by a gene that in the genome database of this species had been annotated as a homolog of SEOR1 (sieve element occlusion-related 1) in Arabidopsis. Sequencing of the gene in our plants corroborated this interpretation, and we named the gene PtSEOR1. Previously characterized SEOR proteins form irregular masses of P-protein slime in functional sieve tubes. We conclude that a subgroup of these proteins is involved in the formation of NPBs at least in the Malpighiales, and that these protein bodies have no role in rapid wound responses of the sieve tube network.
Journal Article
Conformational dynamics, RNA binding, and phase separation regulate the multifunctionality of rabies virus P protein
2025
RNA viruses encode multifunctional proteins to overcome limited genomic capacity and mediate diverse processes in viral replication and host cell modulation. The rabies virus
P
gene encodes full-length P1 protein and the truncated isoform, P3, which acquires phenotypes absent from P1, including interactions with cellular membrane-less organelles (MLOs) formed by liquid-liquid phase separation (LLPS). This gain-of-function suggests that isoform multifunctionality arises not only from discrete functions of protein modules/domains, but also from conformational regulation involving interactions of the globular C-terminal domain and N-terminal intrinsically disordered regions (IDRs). The precise mechanisms underlying gain-of-function, however, remain unresolved. Here, we compare the structure and function of P1 and P3, identifying isoform-specific long-range intra-protomer interactions between the IDRs and C-terminal domain that correlate with conformational states, LLPS behavior, and subcellular localization. Mutations in P3 that alter MLO interactions correspondingly modulate these interactions. P1 and P3 can interact with similar/overlapping sets of MLO-associated proteins and have similar LLPS capacity, but only P3 binds RNA, and this interaction correlates with gain-/loss-of-function mutations. Our findings reveal that conformational differences in isoforms regulate LLPS behavior and contribute to protein-RNA interactions, which controls access to host LLPS structures, uncovering a previously unrecognized strategy in P protein multifunctionality.
Viral proteins can achieve high multifunctionality, but mechanisms are poorly understood. This study shows structural flexibility of rabies virus P protein enables RNA binding and phase separation to expand functions by infiltrating host condensates.
Journal Article
Structure of the Nipah virus polymerase phosphoprotein complex
The Nipah virus (NiV), a member of the
Paramyxoviridae
family, is notorious for its high fatality rate in humans. The RNA polymerase machinery of NiV, comprising the large protein L and the phosphoprotein P, is essential for viral replication. This study presents the 2.9-Å cryo-electron microscopy structure of the NiV L-P complex, shedding light on its assembly and functionality. The structure not only demonstrates the molecular details of the conserved N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP polyribonucleotidyltransferase of the L protein, but also the intact central oligomerization domain and the C-terminal X domain of the P protein. The P protein interacts extensively with the L protein, forming an antiparallel β-sheet among the P protomers and with the fingers subdomain of RdRp. The flexible linker domain of one P promoter extends its contact with the fingers subdomain to reach near the nascent RNA exit, highlighting the distinct characteristic of the NiV L-P interface. This distinctive tetrameric organization of the P protein and its interaction with the L protein provide crucial molecular insights into the replication and transcription mechanisms of NiV polymerase, ultimately contributing to the development of effective treatments and preventive measures against this
Paramyxoviridae
family deadly pathogen.
The Nipah virus, known for its high fatality rate, has no approved vaccine or treatments. Here the authors present the cryoEM structure of the Nipah virus RNA polymerase machinery, comprising the large protein L and the phosphoprotein P.
Journal Article
Prediction of Interactions between Viral and Host Proteins Using Supervised Machine Learning Methods
by
Das, Santasabuj
,
Barman, Ranjan Kumar
,
Saha, Sudipto
in
Accuracy
,
Amino acid composition
,
Amino acids
2014
Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs) has great implication for therapeutics.
In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques.
Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49%) and Random Forest (55.66%). However the specificity of Naïve Bayes was the highest (99.52%) as compared with SVM (74%) and Random Forest (89.08%). Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus \"C protein\" binds to membrane docking protein, while \"X protein\" and \"P protein\" interacts with cell-killing and metabolic process proteins, respectively.
The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV), interacting partners of host protein were identified using optimised SVM model.
Journal Article
Structural Relationships Among the Ribosomal Stalk Proteins from the Three Domains of Life
by
Svergun, Dmitri
,
Grankowski, Nikodem
,
Bernadó, Pau
in
Acidic ribosomal P proteins
,
Acids
,
Amino Acid Sequence
2008
The GTPase center of the large ribosomal subunit, being a landing platform for translation factors, and regarded as one of the oldest structures in the ribosome, is a universally conserved structure in all domains of life. It is thought that this structure could be responsible for the major breakthrough on the way to the RNA/protein world, because its appearance would have dramatically increased the rate and accuracy of protein synthesis. The major part of this center is recognized as a distinct structural entity, called the stalk. The main functional part of the stalk in all domains of life is composed of small L12/P proteins, which are believed to form an evolutionarily conserved group. However, some data indicate that the bacterial and archaeo/eukaryal proteins are not related to each other structurally, and only a functional relationship may be clearly recognized. To clarify this point, we performed a comprehensive comparative analysis of the L12/P proteins from the three domains of life. The results show that bacterial and archaeo/eukaryal L12/P-proteins are not structurally related and, therefore, might not be linked evolutionarily either. Consequently, these proteins should be regarded as analogous rather than homologous systems and probably appeared on the ribosomal particle in two independent events in the course of evolution.
Journal Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
2025
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene.
Journal Article
Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia
by
Nakagawa, Noriko
,
Kuramitsu, Seiki
,
Kamiya, Nobuo
in
Amino Acid Oxidoreductases - chemistry
,
Amino Acid Oxidoreductases - genetics
,
Amino Acid Oxidoreductases - metabolism
2005
The crystal structure of the P‐protein of the glycine cleavage system from
Thermus thermophilus
HB8 has been determined. This is the first reported crystal structure of a P‐protein, and it reveals that P‐proteins do not involve the α
2
‐type active dimer universally observed in the evolutionarily related pyridoxal 5′‐phosphate (PLP)‐dependent enzymes. Instead, novel αβ‐type dimers associate to form an α
2
β
2
tetramer, where the α‐ and β‐subunits are structurally similar and appear to have arisen by gene duplication and subsequent divergence with a loss of one active site. The binding of PLP to the apoenzyme induces large open–closed conformational changes, with residues moving up to 13.5 Å. The structure of the complex formed by the holoenzyme bound to an inhibitor, (aminooxy)acetate, suggests residues that may be responsible for substrate recognition. The molecular surface around the lipoamide‐binding channel shows conservation of positively charged residues, which are possibly involved in complex formation with the H‐protein. These results provide insights into the molecular basis of nonketotic hyperglycinemia.
Journal Article