Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
276
result(s) for
"PAC1 protein"
Sort by:
SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19
Background
Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear.
Methods
Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl
3
-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo.
Results
We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte–platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation.
Conclusions
Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.
Journal Article
Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity
by
Griswold, Jacqueline M
,
Marzo, Matthew G
,
Markus, Steven M
in
Biology
,
Dynein
,
Electron microscopy
2020
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.Three independent but complementary studies by the laboratories of Markus, Reck-Peterson and Yildiz identify a key role for LIS1 in modulating localization, activity and function of dynein in cells.
Journal Article
The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity
2020
Cancer cells subvert immune surveillance through inhibition of T cell effector function. Elucidation of the mechanism of T cell dysfunction is therefore central to cancer immunotherapy. Here, we report that dual specificity phosphatase 2 (DUSP2; also known as phosphatase of activated cells 1, PAC1) acts as an immune checkpoint in T cell antitumor immunity. PAC1 is selectively upregulated in exhausted tumor-infiltrating lymphocytes and is associated with poor prognosis of patients with cancer. PAC1
hi
effector T cells lose their proliferative and effector capacities and convert into exhausted T cells. Deletion of PAC1 enhances immune responses and reduces cancer susceptibility in mice. Through activation of EGR1, excessive reactive oxygen species in the tumor microenvironment induce expression of PAC1, which recruits the Mi-2β nucleosome-remodeling and histone-deacetylase complex, eventually leading to chromatin remodeling of effector T cells. Our study demonstrates that PAC1 is an epigenetic immune regulator and highlights the importance of targeting PAC1 in cancer immunotherapy.
Yin and colleagues show that the phosphatase PAC1 (DUSP2) acts as a checkpoint in cytotoxic T cells to restrain their antitumor function.
Journal Article
Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations
2021
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.
Journal Article
Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism
2020
The pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R) belongs to the secretin receptor family and is widely distributed in the central neural system and peripheral organs. Abnormal activation of the receptor mediates trigeminovascular activation and sensitization, which is highly related to migraine, making PAC1R a potential therapeutic target. Elucidation of PAC1R activation mechanism would benefit discovery of therapeutic drugs for neuronal disorders. PAC1R activity is governed by pituitary adenylate cyclase-activating polypeptide (PACAP), known as a major vasodilator neuropeptide, and maxadilan, a native peptide from the sand fly, which is also capable of activating the receptor with similar potency. These peptide ligands have divergent sequences yet initiate convergent PAC1R activity. It is of interest to understand the mechanism of PAC1R ligand recognition and receptor activity regulation through structural biology. Here we report two near-atomic resolution cryo-EM structures of PAC1R activated by PACAP38 or maxadilan, providing structural insights into two distinct ligand binding modes. The structures illustrate flexibility of the extracellular domain (ECD) for ligands with distinct conformations, where ECD accommodates ligands in different orientations while extracellular loop 1 (ECL1) protrudes to further anchor the ligand bound in the orthosteric site. By structure-guided molecular modeling and mutagenesis, we tested residues in the ligand-binding pockets and identified clusters of residues that are critical for receptor activity. The structures reported here for the first time elucidate the mechanism of specificity and flexibility of ligand recognition and binding for PAC1R, and provide insights toward the design of therapeutic molecules targeting PAC1R.
Journal Article
PACAP38 and PAC1 receptor blockade: a new target for headache?
by
Edvinsson, Lars
,
MaassenVanDenBrink, Antoinette
,
Kamm, Katharina
in
Antibodies
,
Calcitonin
,
Calcitonin gene-related peptide
2018
Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) is a widely distributed neuropeptide involved in neuroprotection, neurodevelopment, nociception and inflammation. Moreover, PACAP38 is a potent inducer of migraine-like attacks, but the mechanism behind this has not been fully elucidated.Migraine is a neurovascular disorder, recognized as the second most disabling disease. Nevertheless, the antibodies targeting calcitonin gene-related peptide (CGRP) or its receptor are the only prophylactic treatment developed specifically for migraine. These antibodies have displayed positive results in clinical trials, but are not effective for all patients; therefore, new pharmacological targets need to be identified.Due to the ability of PACAP38 to induce migraine-like attacks, its location in structures previously associated with migraine pathophysiology and the 100-fold selectivity for the PAC1 receptor when compared to VIP, new attention has been drawn to this pathway and its potential role as a novel target for migraine treatment. In accordance with this, antibodies against PACAP38 (ALD 1910) and PAC1 receptor (AMG 301) are being developed, with AMG 301 already in Phase II clinical trials. No results have been published so far, but in preclinical studies, AMG 301 has shown responses comparable to those observed with triptans. If these antibodies prove to be effective for the treatment of migraine, several considerations should be addressed, for instance, the potential side effects of long-term blockade of the PACAP (receptor) pathway. Moreover, it is important to investigate whether these antibodies will indeed represent a therapeutic advantage for the patients that do not respond the CGRP (receptor)-antibodies.In conclusion, the data presented in this review indicate that PACAP38 and PAC1 receptor blockade are promising antimigraine therapies, but results from clinical trials are needed in order to confirm their efficacy and side effect profile.
Journal Article
Phase I study of procaspase-activating compound-1 (PAC-1) in the treatment of advanced malignancies
by
Peterson, Richard A
,
Fischer, James H
,
Fan, Timothy M
in
Apoptosis
,
Caspase-3
,
Clinical trials
2023
BackgroundProcaspase-3 (PC-3) is overexpressed in multiple tumour types and procaspase-activating compound 1 (PAC-1) directly activates PC-3 and induces apoptosis in cancer cells. This report describes the first-in-human, phase I study of PAC-1 assessing maximum tolerated dose, safety, and pharmacokinetics.MethodsModified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered orally at 7 dose levels (DL) on days 1–21 of a 28-day cycle. Dose-limiting toxicity (DLT) was assessed during the first two cycles of therapy, and pharmacokinetics analysis was conducted on days 1 and 21 of the first cycle. Neurologic and neurocognitive function (NNCF) tests were performed throughout the study.ResultsForty-eight patients were enrolled with 33 completing ≥2 cycles of therapy and evaluable for DLT. DL 7 (750 mg/day) was established as the recommended phase 2 dose, with grade 1 and 2 neurological adverse events noted, while NNCF testing showed stable neurologic and cognitive evaluations. PAC-1’s t1/2 was 28.5 h after multi-dosing, and systemic drug exposures achieved predicted therapeutic concentrations. PAC-1 clinical activity was observed in patients with neuroendocrine tumour (NET) with 2/5 patients achieving durable partial response.ConclusionsPAC-1 dose at 750 mg/day was recommended for phase 2 studies. Activity of PAC-1 in treatment-refractory NET warrants further investigation.Clinical trial registrationClinical Trials.gov: NCT02355535.
Journal Article
PAC1 receptor modulation of freezing and flight behavior in periaqueductal gray
2023
The midbrain periaqueductal gray (PAG) region is a critical anatomical regulator of fear‐related species‐specific defensive reactions (SSDRs). Pituitary adenylate‐cyclase‐activating polypeptide (PACAP), and its main receptor PAC1, play an important role in fear‐related behavior and anxiety disorders. However, the function of the PACAP‐PAC1 system within the PAG with regards to SSDRs has received little attention. To address this gap, we used transgenic PAC1flox/flox mice to examine both conditional and unconditional defensive reactions. We performed conditional PAC1 gene deletion within the ventrolateral(vl)PAG of PAC1flox/flox mice using an adeno‐associated virus (AAV) coding for Cre recombinase. Following viral expression, we used a white noise fear conditioning preparation that produces both an unconditional activity burst to the onset of noise that is followed by conditional freezing. On Day 1, mice received five white noise foot‐shock pairings, whereas on Day 2, they were exposed to white noise five times without shock and we scored the activity burst and freezing to the white noise. Following behavioral testing, histology for immunofluorescent analysis was conducted in order to identify PACAP positive cells and stress‐induced c‐fos activity respectively. We found that PAC1 deletion in vlPAG increased the unconditional activity burst response but disrupted conditional freezing. PAC1 deletion was accompanied by higher c‐fos activity following the behavioral experiments. Furthermore, a significant portion of PACAP‐EGFP positive cells showed overlapping expression with VGAT, indicating their association with inhibitory neurons. The findings suggested that intact PACAP‐PAC1 mechanisms are essential for SSDRs in vlPAG. Therefore, midbrain PACAP contributes to the underlying molecular mechanisms regulating fear responses. PAC1 receptors were conditionally deleted from the ventrolateral PAG where PACAP‐positive cells are primarily located, performed fear conditioning experiments were conducted. Lacking PAC1 receptors showed defensive responses inappropriate to the situation such as freezing, activity burst and darting. The findings suggested that intact PACAP‐PAC1 mechanisms are essential for intact species‐specific defensive reactions in ventrolateral PAG.
Journal Article
PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability
2021
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane-delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Journal Article
Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases
by
Xifró, Xavier
,
Solés-Tarrés, Irene
,
Cabezas-Llobet, Núria
in
Alzheimer's disease
,
Animal cognition
,
Apoptosis
2020
Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD) diseases, affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as cerebral cortex, substantia nigra, striatum and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the Central Nervous System. PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review we first presented evidences showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally we evaluated different novel synthetic PACAP and VIP analogues as promising pharmacological tools.
Journal Article