Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,642 result(s) for "PARENCHYMA"
Sort by:
Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety
• The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency–safety trade-off in the basal angiosperms. • We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency–safety trade-off. We also introduced a new measurement – the distance of species from the trade-off limit – to quantify the co-optimisation of hydraulic efficiency and safety. • Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency–safety optimisation was accompanied by higher APf and vessel-toaxial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. • Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.
global analysis of parenchyma tissue fractions in secondary xylem of seed plants
Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large‐scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29‐fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants.
The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model
This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the 'active' response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial non-living substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the trade-offs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae.
Cabbage (Brassica oleracea var. capitata) Development in Time: How Differential Parenchyma Tissue Growth Affects Leafy Head Formation
This study aims to categorize the morphological changes during cabbage (B. oleracea ssp. capitata) development, seedling, rosette, folding, and heading, and to elucidate the cellular mechanisms of the leaf curvature, essential for the formation of the leafy head. We followed the growth of two cabbage cultivars with distinct head shapes (round and pointed) and one non-heading collard cultivar; we phenotyped the size and volume of the whole plant as well as the size, shape, and curvature of the leaves during growth. By integrating these phenotypic data, we determined the four vegetative stages for both cabbages. The histological phenotypes of microtome sections from five distinct leaf positions of the rosette, folding, and heading leaves at two timepoints during leaf growth were quantified and revealed variations in cellular parameters among leaf types, between leaf positions, and between the adaxial and abaxial sides. We identified two synergistic cellular mechanisms contributing to the curvature of heading leaves: differential growth across the leaf blade, with increased growth at the leaf’s center relative to the margins; and the increased expansion of the spongy parenchyma layer compared to the palisade parenchyma layer, resulting in the direction of the curvature, which is inwards. These two processes together contribute to the typical leafy heads of cabbages.
Vessel-associated cells in angiosperm xylem
Background Vessel‐associated cells (VACs) are highly specialized, living parenchyma cells that are in direct contact with water‐conducting, dead vessels. The contact may be sparse or in large tight groups of parenchyma that completely surrounds vessels. VACs differ from vessel distant parenchyma in physiology, anatomy, and function and have half‐bordered pits at the vessel‐parenchyma juncture. The distinct anatomy of VACs is related to the exchange of substances to and from the water‐transport system, with the cells long thought to be involved in water transport in woody angiosperms, but where direct experimental evidence is lacking. Scope This review focuses on our current knowledge of VACs regarding anatomy and function, including hydraulic capacitance, storage of nonstructural carbohydrates, symplastic and apoplastic interactions, defense against pathogens and frost, osmoregulation, and the novel hypothesis of surfactant production. Based on microscopy, we visually represent how VACs vary in dimensions and general appearance between species, with special attention to the protoplast, amorphous layer, and the vessel‐parenchyma pit membrane. Conclusions An understanding of the relationship between VACs and vessels is crucial to tackling questions related to how water is transported over long distances in xylem, as well as defense against pathogens. New avenues of research show how parenchyma‐vessel contact is related to vessel diameter and a new hypothesis may explain how surfactants arising from VAC can allow water to travel under negative pressure. We also reinforce the message of connectivity between VAC and other cells between xylem and phloem.
Two evolutionarily duplicated domains individually and post-transcriptionally control SWEET expression for phloem transport
• Cell type-specific gene expression is critical for the specialized functions within multicellular organisms. In Arabidopsis, SWEET11 and SWEET12 sugar transporters are specifically expressed in phloem parenchyma (PP) cells and are responsible for sucrose efflux from the PP, the first step of a two-step apoplasmic phloem-loading strategy that initiates the long-distance transport of sugar from leaves to nonphotosynthetic sink tissues. However, we know nothing about what determines the PP cell-specific expression of these SWEETs. • Sequence deletions, histochemical β-glucuronidase (GUS) analysis, cross-sectioning, live-cell imaging, and evolutionary analysis were used to elucidate domains responsible for PP specificity, while a Förster resonance energy transfer (FRET) sensor-based transport assay was used to determine whether substrate specificity coevolved with PP specificity. • We identified two domains in the Arabidopsis SWEET11 coding sequence that, along with its promoter (including 5′ UTR), regulate PP-specific expression at the post-transcriptional level, probably involving RNA-binding proteins. This mechanism is conserved among vascular plants but independent of transport substrate specificity. • We conclude that two evolutionarily duplicated coding sequence domains are essential and individually sufficient for PP-specific expression of SWEET11. We also provide a crucial experimental tool to study PP physiology and development.
Xylem Parenchyma—Role and Relevance in Wood Functioning in Trees
Woody plants are characterised by a highly complex vascular system, wherein the secondary xylem (wood) is responsible for the axial transport of water and various substances. Previous studies have focused on the dead conductive elements in this heterogeneous tissue. However, the living xylem parenchyma cells, which constitute a significant functional fraction of the wood tissue, have been strongly neglected in studies on tree biology. Although there has recently been increased research interest in xylem parenchyma cells, the mechanisms that operate in these cells are poorly understood. Therefore, the present review focuses on selected roles of xylem parenchyma and its relevance in wood functioning. In addition, to elucidate the importance of xylem parenchyma, we have compiled evidence supporting the hypothesis on the significance of parenchyma cells in tree functioning and identified the key unaddressed questions in the field.
Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation
• Parenchyma cells in the xylem store nonstructural carbohydrates (NSC), providing reserves of energy that fuel woody perennials through periods of stress and/or limitations to photosynthesis. If the capacity for storage is subject to selection, then the fraction of wood occupied by living parenchyma should increase towards stressful environments. • Ray parenchyma fraction (RPF) and seasonal NSC dynamics were quantified for 12 conifers and three oaks along a transect spanning warm dry foothills (500 m above sea level) to cold wet treeline (3250 m asl) in California’s central Sierra Nevada. • Mean RPF was lower for both conifer and oak species with warmer dryer ranges. RPF variability increased with elevation or in relation to associated climatic variables in conifers – tree-line-dominant Pinus albicaulis had the lowest mean RPF measured (c. 3.7%), but the highest environmentally standardized variability index. Conifer RPF variability was explained by environment, increasing predominantly towards cooler wetter range edges. In oaks, NSC was explained by environment – values increasing for evergreen and decreasing for deciduous oaks with elevation. Lastly, all species surveyed appear to prioritize filling available RPF with sugar to achieve molarities that balance reasonable tensions over starch to maximize stored carbon. • RPF responds to environment but is unlikely to spatially constrain NSC storage.
Intracellular transport and regulation of transcytosis across the blood–brain barrier
The blood–brain barrier is a dynamic multicellular interface that regulates the transport of molecules between the blood circulation and the brain parenchyma. Proteins and peptides required for brain homeostasis cross the blood–brain barrier via transcellular transport, but the mechanisms that control this pathway are not well characterized. Here, we highlight recent studies on intracellular transport and transcytosis across the blood–brain barrier. Endothelial cells at the blood–brain barrier possess an intricate endosomal network that allows sorting to diverse cellular destinations. Internalization from the plasma membrane, endosomal sorting, and exocytosis all contribute to the regulation of transcytosis. Transmembrane receptors and blood-borne proteins utilize different pathways and mechanisms for transport across brain endothelial cells. Alterations to intracellular transport in brain endothelial cells during diseases of the central nervous system contribute to blood–brain barrier disruption and disease progression. Harnessing the intracellular sorting mechanisms at the blood–brain barrier can help improve delivery of biotherapeutics to the brain.