Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,608 result(s) for "PCB compounds"
Sort by:
Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus)
We examined whether environmentally relevant concentrations of different types of microplastics, with or without PCBs, directly affect freshwater prey and indirectly affect their predators. Asian clams (Corbicula fluminea) were exposed to environmentally relevant concentrations of polyethylene terephthalate (PET), polyethylene, polyvinylchloride (PVC) or polystyrene with and without polychlorinated biphenyls (PCBs) for 28 days. Their predators, white sturgeon (Acipenser transmontanus), were exposed to clams from each treatment for 28 days. In both species, we examined bioaccumulation of PCBs and effects (i.e., immunohistochemistry, histology, behavior, condition, mortality) across several levels of biological organization. PCBs were not detected in prey or predator, and thus differences in bioaccumulation of PCBs among polymers and biomagnification in predators could not be measured. One of the main objectives of this study was to test the hypothesis that bioaccumulation of PCBs would differ among polymer types. Because we could not answer this question experimentally, a bioaccumulation model was run and predicted that concentrations of PCBs in clams exposed to polyethylene and polystyrene would be greater than PET and PVC. Observed effects, although subtle, seemed to be due to microplastics rather than PCBs alone. For example, histopathology showed tubular dilation in clams exposed to microplastics with PCBs, with only mild effects in clams exposed to PCBs alone.
Organochlorine pesticides, polybrominated diphenyl ethers and polychlorinated biphenyls in surficial sediments of the Awash River Basin, Ethiopia
This study was initiated to document information on the levels of sediment contamination with organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Moreover, it was intended to identify compounds which impose major ecological risks to aquatic organisms. Surficial sediments were collected from 46 locations within the streams and rivers of the Awash River Basin. In total 30 compounds were included in this study: 16 OCPs, 7 PCBs and 7 PBDEs. The total concentrations of OCPs, PCBs, and PBDEs ranged from 6.63 to 206.13 ng g-1- dry weight (dw), 0.85 to 26.56 ng g-1-dw and 3.71 to 18.95 ng g-1-dw respectively. Out of all the tested OCPs, heptachlor, heptachlor epoxide, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and β-hexachlorocyclohexane (β-HCH) were the most abundant in the study area. The ratio of (β-HCH/∑HCHs) indicated that HCHs were originally from earlier usage of HCH in the area whereas the ratio of (p,p'-DDT/p,p'-DDE) showed that the majority of DDT components were recently introduced into most of the sampling locations. Even though there were relatively low concentrations of PBDEs and PCBs across the sampling sites, substantial amounts of PCBs were observed in Addis Ababa City. According to the established ecological risk indices, p,p'-DDT and γ-HCH are the major concerns for potential adverse ecological impacts. This study provided the first comprehensive information on organohalogenated compounds' (OCs') occurrences, spatial distributions, and ecological risks in sediments of the Awash River Basin. Thus, the report will be very useful background information for further studies on sediment contamination with OCs' in the region. It also adds important first-hand data to the field of fresh water ecology and provides useful empirical evidence for setting pollution control priorities for an ecologically important, yet largely understudied region.
Low Dose Organochlorine Pesticides and Polychlorinated Biphenyls Predict Obesity, Dyslipidemia, and Insulin Resistance among People Free of Diabetes
There is emerging evidence that background exposure to persistent organic pollutants (POPs) are important in the development of conditions predisposing to diabetes as well as of type 2 diabetes itself. We recently reported that low dose POPs predicted incident type 2 diabetes in a nested case-control study. The current study examined if low dose POPs predicted future adiposity, dyslipidemia, and insulin resistance among controls without diabetes in that study. The 90 controls were diabetes-free during 20 years follow-up. They were a stratified random sample, enriched with overweight and obese persons. POPs measured in 1987-88 (year 2) sera included 8 organochlorine (OC) pesticides, 22 polychlorinated biphenyls (PCBs), and 1 polybrominated biphenyl (PBB). Body mass index (BMI), triglycerides, HDL-cholesterol, LDL-cholesterol, and homeostasis model assessment value for insulin resistance (HOMA-IR) were study outcomes at 2005-06 (year 20). The evolution of study outcomes during 18 years by categories of serum concentrations of POPs at year 2 was evaluated by adjusting for the baseline values of outcomes plus potential confounders. Parallel to prediction of type 2 diabetes, many statistically significant associations of POPs with dysmetabolic conditions appeared at low dose, forming inverted U-shaped dose-response relations. Among OC pesticides, p,p'-DDE most consistently predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 after adjusting for baseline values. Oxychlordane, trans-nonachlor, and hexachlorobenzene also significantly predicted higher triglycerides. Persistent PCBs with ≥7 chlorides predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 with similar dose-response curves. Simultaneous exposure to various POPs in the general population may contribute to development of obesity, dyslipidemia, and insulin resistance, common precursors of type 2 diabetes and cardiovascular diseases. Although obesity is a primary cause of these metabolic abnormalities, POPs exposure may contribute to excess adiposity and other features of dysmetabolism.
Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils
Extended soil contamination by polychlorinated biphenyls (PCBs) represents a global environmental issue that can hardly be addressed with the conventional remediation treatments. Rhizoremediation is a sustainable alternative, exploiting plants to stimulate in situ the degradative bacterial communities naturally occurring in historically polluted areas. This approach can be enhanced by the use of bacterial strains that combine PCB degradation potential with the ability to promote plant and root development. With this aim, we established a collection of aerobic bacteria isolated from the soil of the highly PCB-polluted site \"SIN Brescia-Caffaro\" (Italy) biostimulated by the plant Phalaris arundinacea. The strains, selected on biphenyl and plant secondary metabolites provided as unique carbon source, were largely dominated by Actinobacteria and a significant number showed traits of interest for remediation, harbouring genes homologous to bphA, involved in the PCB oxidation pathway, and displaying 2,3-catechol dioxygenase activity and emulsification properties. Several strains also showed the potential to alleviate plant stress through 1-aminocyclopropane-1-carboxylate deaminase activity. In particular, we identified three Rhodococcus strains able to degrade in vitro several PCB congeners and to promote lateral root emergence in the model plant Arabidopsis thaliana in vivo. In addition, these strains showed the capacity to colonize the root system and to increase the plant biomass in PCB contaminated soil, making them ideal candidates to sustain microbial-assisted PCB rhizoremediation through a bioaugmentation approach.
An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus
Type 2 Diabetes (T2D) and other chronic diseases are caused by a complex combination of many genetic and environmental factors. Few methods are available to comprehensively associate specific physical environmental factors with disease. We conducted a pilot Environmental-Wide Association Study (EWAS), in which epidemiological data are comprehensively and systematically interpreted in a manner analogous to a Genome Wide Association Study (GWAS). We performed multiple cross-sectional analyses associating 266 unique environmental factors with clinical status for T2D defined by fasting blood sugar (FBG) concentration > or =126 mg/dL. We utilized available Centers for Disease Control (CDC) National Health and Nutrition Examination Survey (NHANES) cohorts from years 1999 to 2006. Within cohort sample numbers ranged from 503 to 3,318. Logistic regression models were adjusted for age, sex, body mass index (BMI), ethnicity, and an estimate of socioeconomic status (SES). As in GWAS, multiple comparisons were controlled and significant findings were validated with other cohorts. We discovered significant associations for the pesticide-derivative heptachlor epoxide (adjusted OR in three combined cohorts of 1.7 for a 1 SD change in exposure amount; p<0.001), and the vitamin gamma-tocopherol (adjusted OR 1.5; p<0.001). Higher concentrations of polychlorinated biphenyls (PCBs) such as PCB170 (adjusted OR 2.2; p<0.001) were also found. Protective factors associated with T2D included beta-carotenes (adjusted OR 0.6; p<0.001). Despite difficulty in ascertaining causality, the potential for novel factors of large effect associated with T2D justify the use of EWAS to create hypotheses regarding the broad contribution of the environment to disease. Even in this study based on prior collected epidemiological measures, environmental factors can be found with effect sizes comparable to the best loci yet found by GWAS.
Microplastic-mediated transport of PCBs? A depuration study with Daphnia magna
The role of microplastic (MP) as a carrier of persistent organic pollutants (POPs) to aquatic organisms has been a topic of debate. However, the reverse POP transport can occur if relative contaminant concentrations are higher in the organism than in the microplastic. We evaluated the effect of microplastic on the PCB removal in planktonic animals by exposing the cladoceran Daphnia magna with a high body burden of polychlorinated biphenyls (PCB 18, 40, 128 and 209) to a mixture of microplastic and algae; daphnids exposed to only algae served as the control. As the endpoints, we used PCB body burden, growth, fecundity and elemental composition (%C and %N) of the daphnids. In the daphnids fed with microplastic, PCB 209 was removed more efficiently, while there was no difference for any other congeners and ΣPCBs between the microplastic-exposed and control animals. Also, higher size-specific egg production in the animals carrying PCB and receiving food mixed with microplastics was observed. However, the effects of the microplastic exposure on fecundity were of low biological significance, because the PCB body burden and the microplastic exposure concentrations were greatly exceeding environmentally relevant concentrations.
Association between Several Persistent Organic Pollutants and Thyroid Hormone Levels in Cord Blood Serum and Bloodspot of the Newborn Infants of Korea
Current knowledge on adverse endocrine disruption effects of persistent organic pollutants (POPs) among newborn infants is limited and often controversial. To investigate the associations between prenatal exposure to major POPs and thyroid hormone levels among newborn infants, both cord serum or maternal serum concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were compared with five thyroid hormones in cord serum of newborn infants as well as TSH in bloodspot collected at 2 day after birth (n=104). Since cord serum thyroid hormones could be affected by those of mothers, thyroid hormone concentrations of the matching mothers at delivery were adjusted. In cord serum, BDE-47, -99, and Σchlordane (CHD) showed significant positive associations with cord or bloodspot TSH. At the same time, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorbenzene (HCB) showed negative associations with total T3 and total T4 in cord serum, respectively. Maternal exposure to β-hexachlorhexane (β-HCH), ΣCHD, ΣDDT, or p,p'-DDE were also associated with neonatal thyroid hormones. Although the sample size is small and the thyroid hormone levels of the subjects were within the reference range, our observation supports thyroid disrupting potential of several POPs among newborn infants, at the levels occurring in the general population. Considering the importance of thyroid hormones during gestation and early life stages, health implication of thyroid hormone effects by low level POPs exposure deserves further follow up investigations.
Occurrence and distribution of anthropogenic persistent organic pollutants in coastal sediments and mud shrimps from the wetland of central Taiwan
Sediment profile and mud shrimp (Austinogebia edulis) from the coastal wetland of central Taiwan in 2017 and 2018 were analyzed for concentration, source, and composition of persistent organic pollutants (POPs) including polycyclic aromatic hydrocarbon (PAHs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs; DDT and HCB), and polychlorinated biphenyls (PCBs). Sediment profiling indicated PAH concentrations reaching 254.38 ng/g dw in areas near industrial areas and PAH concentrations of 41.8 and 58.42 ng/g dw in sampling areas further from industrial areas, suggesting that the determining factor for spatial distribution of POPs might be proximity to contaminant sources in industrial zones. Based on molecular indices, PAHs were substantially of both pyrolytic and petrogenic origins. The main sources for PCBs were Aroclor 1016 and 1260 and the congener BDE-209 was the dominant component among PBDE congeners. While we were unable to obtain live mud shrimp samples from the heavily contaminated areas, in samples from less contaminated areas, the risk assessment on mud shrimp still illustrated a borderline threat, with DDT concentrations almost reaching standardized values of Effects Range-Low (ERL). Bioaccumulation factors for DDTs and PCBs (17.33 and 54.59, respectively) were higher than other POPs in this study. Further study is essential to assess and understand the impact of these chemicals on the wetland ecosystem near this heavily industrialized area.
Exposure to Organochlorine Pollutants and Type 2 Diabetes: A Systematic Review and Meta-Analysis
Though exposure to organochlorine pollutants (OCPs) is considered a risk factor for type 2 diabetes (T2DM), epidemiological evidence for the association remains controversial. A systematic review and meta-analysis was applied to quantitatively evaluate the association between exposure to OCPs and incidence of T2DM and pool the inconsistent evidence. Publications in English were searched in MEDLINE and WEB OF SCIENCE databases and related reference lists up to August 2013. Quantitative estimates and information regarding study characteristics were extracted from 23 original studies. Quality assessments of external validity, bias, exposure measurement and confounding were performed, and subgroup analyses were conducted to examine the heterogeneity sources. We retrieved 23 eligible articles to conduct this meta-analysis. OR (odds ratio) or RR (risk ratio) estimates in each subgroup were discussed, and the strong associations were observed in PCB-153 (OR, 1.52; 95% CI, 1.19-1.94), PCBs (OR, 2.14; 95% CI, 1.53-2.99), and p,p'-DDE (OR, 1.33; 95% CI, 1.15-1.54) based on a random-effects model. This meta-analysis provides quantitative evidence supporting the conclusion that exposure to organochlorine pollutants is associated with an increased risk of incidence of T2DM.
Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126
Chemical pollutant exposure is a risk factor contributing to the growing epidemic of non-alcoholic fatty liver disease (NAFLD) affecting human populations that consume a western diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. Here, we describe the alterations in gene expression profiles and metabolite levels in the human HepaRG liver cell line, a validated model for cellular steatosis, exposed to the polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can induce NAFLD. Sparse partial least squares classification of the molecular profiles revealed that exposure to PCB 126 provoked a decrease in polyunsaturated fatty acids as well as an increase in sphingolipid levels, concomitant with a decrease in the activity of genes involved in lipid metabolism. This was associated with an increased oxidative stress reflected by marked disturbances in taurine metabolism. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. These changes in metabolome and transcriptome profiles were observed even at the lowest concentration (100 pM) of PCB 126 tested. A decrease in docosatrienoate levels was the most sensitive biomarker. Overall, our integrated multi-omics analysis provides mechanistic insight into how this class of chemical pollutant can cause NAFLD. Our study lays the foundation for the development of molecular signatures of toxic effects of chemicals causing fatty liver diseases to move away from a chemical risk assessment based on in vivo animal experiments.