Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "PD sensing and analytics"
Sort by:
Sensing and Analyzing Partial Discharge Phenomenology in Electrical Asset Components Supplied by Distorted AC Waveform
Power electronic devices for AC/DC and AC/AC conversion are, nowadays, widely distributed in electrified transportation and industrial applications, which can determine significant deviation in supply voltage waveform from the AC sinusoidal and promote insulation extrinsic aging mechanisms as partial discharges (PDs). PDs are one of the most harmful processes as they are able to cause accelerated extrinsic aging of electrical insulation systems and are the cause of premature failure in electrical asset components. PD phenomenology under pulse width modulated (PWM) voltage waveforms has been dealt with in recent years, also through some IEC/IEEE standards, but less work has been performed on PD harmfulness under AC distorted waveforms containing voltage harmonics and notches. On the other hand, these voltage waveforms can often be present in electrical assets containing conventional loads and power electronics loads/drives, such as for ships or industrial installations. The purpose of this paper is to provide a contribution to this lack of knowledge, focusing on PD sensing and phenomenology. It has been shown that PD patterns can change considerably with respect to those known under sinusoidal AC when harmonic voltages and/or notches are present in the supply waveform. This can impact PD typology identification, which is based on features related to PD pattern-based physics. The adaptation of identification AI algorithms used for AC sinusoidal voltage as well as distorted AC waveforms is discussed in this paper, showing that effective identification of the type of defects generating PD, and thus of their harmfulness, can still be achieved.
Self-supported electrochemical sensor based on uniform palladium nanoparticles functionalized porous graphene film for monitoring H2O2 released from living cells
Graphene film has been considered a promising material for the construction of self-supported electrodes due to its favorable flexibility and high conductivity. However, the film fabricated from pristine graphene or conventional graphene sheet reduced graphene oxide processes limited electrocatalytic performance. Decorating active metal species or incorporating heteroatoms into the graphene framework have been proved to be effective methods to enhance the electrocatalytic efficiency of graphene film-based self-supported electrodes. Herein, we present a freestanding electrode composed of uniform Pd nanoparticles decorating N,S co-doped porous graphene film (Pd/NSPGF) and explore its practical application in differentiating various human colon cell types by in situ tracking the amount of H2O2 secreted from live cells. Our findings reveal that, on the one hand, the NSPGF has abundant surface and inner pores, which promote active site exposure, and mass diffusion during electrochemical reactions; on the other hand, the substitutional doping of the graphene framework with heteroatoms (e.g., N or S) can tailor its electronic and chemical properties, and facilitate the uniform loading of high-density Pd nanoparticles. Moreover, the intrinsic activity of Pd/NSPGF is regulated by the interaction of Pd nanoparticles with the NSPGF support. Taking the advantages of morphology and composition, the self-supported Pd/NSPGF electrode displays remarkable electrochemical performance with a wide linear range up to 2.0 mM, low detection limit of 0.1 μM (S/N = 3), high sensitivity of 665 µA cm−2 mM−1, and good selectivity. When applied in real-time tracking of the H2O2 released from normal human colon epithelial cells and human colorectal cancer cells, the Pd/NSPGF-based electrochemical sensing system can distinguish the cell types by testing the number of extracellular H2O2 molecules released per cell, which holds considerable potential for early detection and monitoring of disease-related clinical specimens.
Imbedding Pd Nanoparticles into Porous In2O3 Structure for Enhanced Low-Concentration Methane Sensing
Methane (CH4), as the main component of natural gas and coal mine gas, is widely used in daily life and industrial processes and its leakage always causes undesirable misadventures. Thus, the rapid detection of low concentration methane is quite necessary. However, due to its robust chemical stability resulting from the strong tetrahedral-symmetry structure, the methane molecules are usually chemically inert to the sensing layers in detectors, making the rapid and efficient alert a big challenge. In this work, palladium nanoparticles (Pd NPs) embedded indium oxide porous hollow tubes (In2O3 PHTs) were successfully synthesized using Pd@MIL-68 (In) MOFs as precursors. All In2O3-based samples derived from Pd@MIL-68 (In) MOFs inherited the morphology of the precursors and exhibited the feature of hexagonal hollow tubes with porous architecture. The gas-sensing performances to 5000 ppm CH4 were evaluated and it was found that Pd@In2O3-2 gave the best response (Ra/Rg = 23.2) at 370 °C, which was 15.5 times higher than that of pristine-In2O3 sensors. In addition, the sensing materials also showed superior selectivity against interfering gases and a rather short response/recovery time of 7 s/5 s. The enhancement in sensing performances of Pd@In2O3-2 could be attributed to the large surface area, rich porosity, abundant oxygen vacancies and the catalytic function of Pd NPs.
Flexible Graphene Paper Modified Using Pt&Pd Alloy Nanoparticles Decorated Nanoporous Gold Support for the Electrochemical Sensing of Small Molecular Biomarkers
The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs–NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.
A Remote Sensor for Detecting Methane Based on Palladium-Decorated Single Walled Carbon Nanotubes
The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID), and functionalized carbon nanotubes (CNTs). The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 µm-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs) are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI) and the comparative analog identifier (∆AID). Results validate the sensor’s ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ∆AID can increase 3% in response to methane concentrations ranging from zero to 100 ppm.