Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "PD-1 regulator B cells"
Sort by:
The interaction between the soluble programmed death ligand-1 (sPD-L1) and PD-1+ regulator B cells mediates immunosuppression in triple-negative breast cancer
Accumulating evidence suggests that regulatory B cells (Bregs) play important roles in inhibiting the immune response in tumors. Programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) are important molecules that maintain the balance of the immune response and immune tolerance. This study aims to evaluate the soluble form of PD-L1 and its function in inducing the differentiation of B lymphocytes, investigate the relationship between soluble PD-L1 (sPD-L1) and B-cell subsets, and explore the antitumor activity of T lymphocytes after PD-L1 blockade in coculture systems. In an effort to explore the role of sPD-L1 in human breast cancer etiology, we examined the levels of sPD-L1 and interleukin-10 (IL-10) in the serum of breast tumor patients and the proportions of B cells, PD-1 + B cells, Bregs, and PD-1 + Bregs in the peripheral blood of patients with breast tumors and assessed their relationship among sPD-L1, IL-10, and B-cell subsets. The levels of sPD-L1 and IL-10 in serum were found to be significantly higher in invasive breast cancer (IBCa) patients than in breast fibroadenoma (FIBma) patients. Meanwhile, the proportions and absolute numbers of Bregs and PD-1 + Bregs in the peripheral blood of IBCa patients were significantly higher than those of FIBma patients. Notably, they were the highest in triple-negative breast cancer (TNBC) among other subtypes of IBCa. Positive correlations of sPD-L1 and IL-10, IL-10 and PD-1 + Bregs, and also sPD-L1 and PD-1 + Bregs were observed in IBCa. We further demonstrated that sPD-L1 could induce Breg differentiation, IL-10 secretion, and IL-10 mRNA expression in a dose-dependent manner in vitro . Finally, the induction of regulatory T cells (T regs ) by Bregs was further shown to suppress the antitumor response and that PD-L1 blockade therapies could promote the apoptosis of tumor cells. Together, these results indicated that sPD-L1 could mediate the differentiation of Bregs, expand CD4 + T regs and weaken the antitumor activity of CD4 + T cells. PD-L1/PD-1 blockade therapies might be a powerful therapeutic strategy for IBCa patients, particularly for TNBC patients with high level of PD-1 + Bregs.
Inducible but Not Constitutive Expression of PD-L1 in Human Melanoma Cells Is Dependent on Activation of NF-κB
Monoclonal antibodies against immune checkpoint blockade have proven to be a major success in the treatment of melanoma. The programmed death receptor-1 ligand-1 (PD-L1) expression on melanoma cells is believed to have an inhibitory effect on T cell responses and to be an important escape mechanism from immune attack. Previous studies have shown that PD-L1 can be expressed constitutively or can be induced by IFN-γ secreted by infiltrating lymphocytes. In the present study we have investigated the mechanism underlying these two modes of PD-L1 expression in melanoma cells including cells that had acquired resistance to the BRAF inhibitor vemurafenib. PD-L1 expression was examined by flow cytometry and immunoblotting. Specific inhibitors and siRNA knockdown approaches were used to examine the roles of the RAF/ MEK, PI3K, NF-κB, STAT3 and AP1/ c-Jun pathways. IFN-γ inducible expression of PD-L1 was dependent on NF-κB as shown by inhibition with BMS-345541, an inhibitor of IκB and the BET protein inhibitor I-BET151, as well as by siRNA knockdown of NF-κB subunits. We were unable to implicate the BRAF/MEK pathway as major regulators in PD-L1 expression on vemurafenib resistant cells. Similarly the PI3K/AKT pathway and the transcription factors STAT3 and c-Jun had only minor roles in IFN-γ induced expression of PD-L1. The mechanism underlying constitutive expression remains unresolved. We suggest these results have significance in selection of treatments that can be used in combination with monoclonal antibodies against PD1, to enhance their effectiveness and to reduce inhibitory effects melanoma cells have against cytotoxic T cell activity.
Blockade of TIGAR prevents CD8+ T cell dysfunction and elicits anti-AML immunity
Acute myeloid leukemia (AML) cells and activated T cells rely on aerobic glycolysis for energy metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits glycolysis and protects AML cells from apoptosis. Preliminary studies suggest that combining TIGAR inhibition with the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) may offer a therapeutic strategy for AML. However, it remains unclear whether silencing TIGAR can enhance T cell function and thereby improve AML prognosis. This study aims to investigate whether TIGAR silencing in host can eliminate AML cells and rejuvenate dysfunctional T cells with mouse models. TIGAR knockout mice on the C57BL/6J background were generated and AML mouse models were established through intravenous injection of C1498 cells. We found that TIGAR depletion enhanced CD8 + T cell counts and raised CD4/CD8 ratio, downregulating CD44 and immune checkpoints CTLA-4, LAG-3, PD-1 on cell surface of CD8 + T cells. TIGAR depletion boosted cytokine secretion (IFN-γ, perforin, granzyme B, TNF-α) by CD8 + T cells and IL-2, TNF-α by CD4 + T cells, improving cytotoxicity against AML cells, proliferation, and reducing apoptosis. TIGAR suppression in host with 2-DG prolonged AML mouse survival, decreased tumor burden, and leukemic infiltration. TIGAR suppression restored thymic T cell development and peripheral immune balance. Single-cell RNA sequencing analysis also revealed that high TIGAR expression influences the glycolysis pathway, and correlates with markers of T cell exhaustion. This study indicates that blocking TIGAR prevents CD8 + T cell dysfunction and induces anti-AML immunity.
Upregulation of Programmed Death-1 and Its Ligand in Cardiac Injury Models: Interaction with GADD153
Programmed Death-1 (PD-1) and its ligand, PD-L1, are regulators of immune/ inflammatory mechanisms. We explored the potential involvement of PD-1/PD-L1 pathway in the inflammatory response and tissue damage in cardiac injury models. Ischemic-reperfused and cryoinjured hearts were processed for flow cytometry and immunohistochemical studies for determination of cardiac PD-1 and PD-L1 in the context of assessment of the growth arrest- and DNA damage-inducible protein 153 (GADD153) which regulates both inflammation and cell death. Further, we explored the potential ability of injured cardiac cells to influence proliferation of T lymphocytes. The isolated ischemic-reperfused hearts displayed marked increases in expression of PD-1 and PD-L1 in cardiomyocytes; however, immunofluorescent studies indicate that PD-1 and PD-L1 are not primarily co-expressed on the same cardiomyocytes. Upregulation of PD-1/PD-L1 was associated with a) marked increases in GADD153 and interleukin (IL)-17 but a mild increase in IL-10 and b) disruption of mitochondrial membrane potential (ψm) as well as apoptotic and necrotic cell death. Importantly, while isotype matching treatment did not affect the aforementioned changes, treatment with the PD-L1 blocking antibody reversed those effects in association with marked cardioprotection. Further, ischemic-reperfused cardiac cells reduced proliferation of T lymphocytes, an effect partially reversed by PD-L1 antibody. Subsequent studies using the cryoinjury model of myocardial infarction revealed significant increases in PD-1, PD-L1, GADD153 and IL-17 positive cells in association with significant apoptosis/necrosis. The data suggest that upregulation of PD-1/PD-L1 pathway in cardiac injury models mediates tissue damage likely through a paracrine mechanism. Importantly, inhibition of T cell proliferation by ischemic-reperfused cardiac cells is consistent with the negative immunoregulatory role of PD-1/PD-L1 pathway, likely reflecting an endogenous cardiac mechanism to curtail the deleterious impact of infiltrating immune cells to the damaged myocardium. The balance of these countervailing effects determines the extent of cardiac injury.
Highly competent, non-exhausted CD8+ T cells continue to tightly control pathogen load throughout chronic Trypanosoma cruzi infection
Trypanosoma cruzi infection is characterized by chronic parasitism of non-lymphoid tissues and is rarely eliminated despite potent adaptive immune responses. This failure to cure has frequently been attributed to a loss or impairment of anti-T. cruzi T cell responses over time, analogous to the T cell dysfunction described for other persistent infections. In this study, we have evaluated the role of CD8+ T cells during chronic T. cruzi infection (>100 dpi), with a focus on sites of pathogen persistence. Consistent with repetitive antigen exposure during chronic infection, parasite-specific CD8+ T cells from multiple organs expressed high levels of KLRG1, but exhibit a preferential accumulation of CD69+ cells in skeletal muscle, indicating recent antigen encounter in a niche for T. cruzi persistence. A significant proportion of CD8+ T cells in the muscle also produced IFNγ, TNFα and granzyme B in situ, an indication of their detection of and functional response to T. cruzi in vivo. CD8+ T cell function was crucial for the control of parasite burden during chronic infection as exacerbation of parasite load was observed upon depletion of this population. Attempts to improve T cell function by blocking PD-1 or IL-10, potential negative regulators of T cells, failed to increase IFNγ and TNFα production or to enhance T. cruzi clearance. These results highlight the capacity of the CD8+ T cell population to retain essential in vivo function despite chronic antigen stimulation and support a model in which CD8+ T cell dysfunction plays a negligible role in the ability of Trypanosoma cruzi to persist in mice.
Mutational Profile and Pathological Features of a Case of Interleukin-10 and RGS1-Positive Spindle Cell Variant Diffuse Large B-Cell Lymphoma
Diffuse large B-cell lymphoma with spindle cell morphology is a rare variant. We present the case of a 74-year-old male who initially presented with a right supraclavicular (lymph) node enlargement. Histological analysis showed a proliferation of spindle-shaped cells with narrow cytoplasms. An immunohistochemical panel was used to exclude other tumors, such as melanoma, carcinoma, and sarcoma. The lymphoma was characterized by a cell-of-origin subtype of germinal center B-cell-like (GCB) based on Hans’ classifier (CD10-negative, BCL6-positive, and MUM1-negative); EBER negativity, and the absence of BCL2, BCL6, and MYC rearrangements. Mutational profiling using a custom panel of 168 genes associated with aggressive B-cell lymphomas confirmed mutations in ACTB, ARID1B, DUSP2, DTX1, HLA-B, PTEN, and TNFRSF14. Based on the LymphGen 1.0 classification tool, this case had an ST2 subtype prediction. The immune microenvironment was characterized by moderate infiltration of M2-like tumor-associated macrophages (TMAs) with positivity of CD163, CSF1R, CD85A (LILRB3), and PD-L1; moderate PD-1 positive T cells, and low FOXP3 regulatory T lymphocytes (Tregs). Immunohistochemical expression of PTX3 and TNFRSF14 was absent. Interestingly, the lymphoma cells were positive for HLA-DP-DR, IL-10, and RGS1, which are markers associated with poor prognosis in DLBCL. The patient was treated with R-CHOP therapy, and achieved a metabolically complete response.