Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
108 result(s) for "PDGFRβ"
Sort by:
A Positive Feedback Loop between Inactive VHL-Triggered Histone Lactylation and PDGFRβ Signaling Drives Clear Cell Renal Cell Carcinoma Progression
Inactive von Hippel-Lindau (VHL) is linked to metabolic reprogramming and plays pivotal roles in the pathogenesis of clear cell renal cell carcinoma (ccRCC). Here, we identify a previously unknown oncogenic role for inactive VHL in actively triggering histone lactylation to promote ccRCC progression. In patients with ccRCC, inactive VHL positively correlates with the presence of histone lactylation, and high levels of histone lactylation indicates poor patient prognosis. Inactive VHL-triggered histone lactylation contributes to ccRCC progression by activating the transcription of platelet-derived growth factor receptor β (PDGFRβ). In turn, PDGFRβ signaling is shown to stimulate histone lactylation, thereby forming an oncogenic positive feedback loop in ccRCC. Target correction of aberrant histone lactylation represses the growth and metastasis of ccRCC in vivo. More importantly, the combined inhibition of histone lactylation and PDGFRβ significantly reinforces the therapeutic efficacy. This work underscores the importance of histone lactylation in facilitating ccRCC progression and suggests targeting the positive feedback loop between histone lactylation and PDGFRβ signaling might provide a promising therapeutic strategy for ccRCC patients.
M2 Macrophages Promote PDGFRβ+ Pericytes Migration After Spinal Cord Injury in Mice via PDGFB/PDGFRβ Pathway
Platelet derived growth factor receptor β positive (PDGFRβ + ) pericytes form fibrotic scar, which prevents axonal regeneration after spinal cord injury (SCI). However, the mechanism by which PDGFRβ + pericytes migrate to the injury core is unclear. Here, we investigated the effect and mechanism of macrophages polarization on PDGFRβ + pericytes migration after SCI. Macrophages were closely related to the spatiotemporal distribution of PDGFRβ + pericytes in the injury core at 3, 7, and 14 days postinjury (dpi). Macrophages appeared M2 polarization at 3 and 7 dpi while M1 polarization at 14 dpi. The expression of platelet derived growth factor B (PDGFB) was significantly increased after SCI and after macrophages M2 polarization. The promoting effect of exogenous PDGFB and M2 macrophages conditioned medium on PDGFRβ + pericytes migration could be blocked by SU16f, a PDGFRβ specific inhibitor. These findings indicate that M2 macrophages can secrete PDGFB acting on PDGFRβ to promote PDGFRβ + pericytes migration, which can be blocked by a PDGFRβ specific inhibitor SU16f. The PDGFB/PDGFRβ pathway is a promising new target for the treatment of SCI.
CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development
The blood–brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation startswhen the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte–EC interaction during BBB development, the molecular mechanisms coordinating the pericyte–EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.
Platelet‐derived growth factor receptor‐β‐positive telocytes in skeletal muscle interstitium
Telocytes (TCs) represent a new cell type recently described in mammalian skeletal muscle interstitium as well as in other organs. These have a specific morphology and phenotype, both in situ and in vitro. Telocytes are cells with long and slender cell prolongations, in contact with other interstitial cells, nerve fibres, blood capillaries and resident stem cells in niches. Our aim was to investigate the potential contribution of TCs to micro‐vascular networks by immunofluorescent labelling of specific angiogenic growth factors and receptors. We found that in human skeletal muscle TCs were constantly located around intermediate and small blood vessels and endomysial capillaries. Epi‐fluorescence and laser confocal microscopy showed that TCs express c‐kit, platelet‐derived growth factor receptor (PDGFR)‐β and VEGF, both in situ and in vitro. Telocytes were constantly located in the perivascular or pericapillary space, as confirmed by double staining of c‐kit/CD31, PDGFR‐β/CD31 and PDGFR‐β/α‐smooth muscle actin, respectively. Electron microscopy (EM) differentiated between pericytes and other cell types. Laminin labelling showed that TCs are not enclosed or surrounded by a basal lamina in contrast to mural cells. In conclusion, a) PDGFR‐β could be used as a marker for TCs and b) TCs are presumably a transitional population in the complex process of mural cell recruitment during angiogenesis and vascular remodelling.
Retinal inflammation in murine models of type 1 and type 2 diabetes with diabetic retinopathy
Aims/hypothesis The loss of pericytes surrounding the retinal vasculature in early diabetic retinopathy underlies changes to the neurovascular unit that lead to more destructive forms of the disease. However, it is unclear which changes lead to loss of retinal pericytes. This study investigated the hypothesis that chronic increases in one or more inflammatory factors mitigate the signalling pathways needed for pericyte survival. Methods Loss of pericytes and levels of inflammatory markers at the mRNA and protein levels were investigated in two genetic models of diabetes, Ins2 Akita/+ (a model of type 1 diabetes) and Lepr db/db (a model of type 2 diabetes), at early stages of diabetic retinopathy. In addition, changes that accompany gliosis and the retinal vasculature were determined. Finally, changes in retinal pericytes chronically incubated with vehicle or increasing amounts of IFNγ were investigated to determine the effects on pericyte survival. The numbers of pericytes, microglia, astrocytes and endothelial cells in retinal flatmounts were determined by immunofluorescence. Protein and mRNA levels of inflammatory factors were determined using multiplex ELISAs and quantitative reverse transcription PCR (qRT-PCR). The effects of IFNγ on the murine retinal pericyte survival-related platelet-derived growth factor receptor β (PDGFRβ) signalling pathway were investigated by western blot analysis. Finally, the levels of cell death-associated protein kinase C isoform delta (PKCδ) and cleaved caspase 3 (CC3) in pericytes were determined by western blot analysis and immunocytochemistry. Results The essential findings of this study were that both type 1 and 2 diabetes were accompanied by a similar progression of retinal pericyte loss, as well as gliosis. However, inflammatory factor expression was dissimilar in the two models of diabetes, with peak expression occurring at different ages for each model. Retinal vascular changes were more severe in the type 2 diabetes model. Chronic incubation of murine retinal pericytes with IFNγ decreased PDGFRβ signalling and increased the levels of active PKCδ and CC3. Conclusions/interpretation We conclude that retinal inflammation is involved in and sustains pericyte loss as diabetic retinopathy progresses. Moreover, IFNγ plays a critical role in reducing pericyte survival in the retina by reducing activation of the PDGFRβ signalling pathway and increasing PKCδ levels and pericyte apoptosis. Graphical Abstract
CSF evidence of pericyte damage in Alzheimer’s disease is associated with markers of blood-brain barrier dysfunction and disease pathology
Background We aimed to assess the relationship between levels of a cerebrospinal fluid (CSF) marker of pericyte damage, soluble platelet-derived growth factor receptor β (sPDGFRβ) and CSF markers of blood-brain barrier (BBB) integrity (CSF albumin and CSF/serum albumin ratio) and disease pathology (reduced CSF Aβ42 and elevated CSF total and phosphorylated tau) in Alzheimer’s disease (AD). Methods sPDGFRβ and albumin were measured by sandwich ELISA in ante-mortem CSF from 39 AD and 39 age-matched controls that were grouped according to their biomarker profile (i.e. AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL). sPDGFRβ was also measured in matched serum and CSF samples ( n  = 23) in a separate neurologically normal group for which the CSF/serum albumin ratio had been determined. Results CSF sPDGFRβ level was significantly increased in AD ( p  = 0.0038) and correlated positively with albumin ( r  = 0.45, p  = 0.007), total tau ( r  = 0.50, p  = 0.0017) and phosphorylated tau ( r  = 0.41, p  = 0.013) in AD but not in controls. CSF sPDGFRβ did not correlate with Aβ42. Serum and CSF sPDGFRβ were positively correlated ( r  = 0.547, p  = 0.0085) in the independent neurologically normal CSF/serum matched samples. Conclusions We provide further evidence of an association between pericyte injury and BBB breakdown in AD and novel evidence that a CSF marker of pericyte injury is related to the severity of AD pathology.
Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies
Background Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. Methods Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Ir en -AuSiO 2 _COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Ir en -AuSiO 2 _Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. Results We show efficient capability of Ir en -AuSiO 2 _Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR + tumor/PDGFRβ + stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. Conclusions Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
PI3K inhibition circumvents resistance to SHP2 blockade in metastatic triple-negative breast cancer
The protein tyrosine phosphatase SHP2 activates oncogenic pathways downstream of most receptor tyrosine kinases (RTK) and has been implicated in various cancer types, including the highly aggressive subtype of triple-negative breast cancer (TNBC). Although allosteric inhibitors of SHP2 have been developed and are currently being evaluated in clinical trials, neither the mechanisms of the resistance to these agents, nor the means to circumvent such resistance have been clearly defined. The PI3K signaling pathway is also hyperactivated in breast cancer and contributes to resistance to anticancer therapies. When PI3K is inhibited, resistance also develops for example via activation of RTKs. We therefore assessed the effect of targeting PI3K and SHP2 alone or in combination in preclinical models of metastatic TNBC. In addition to the beneficial inhibitory effects of SHP2 alone, dual PI3K/SHP2 treatment decreased primary tumor growth synergistically, blocked the formation of lung metastases, and increased survival in preclinical models. Mechanistically, transcriptome and phospho-proteome analyses revealed that resistance to SHP2 inhibition is mediated by PDGFRβ-evoked activation of PI3K signaling. Altogether, our data provide a rationale for co-targeting of SHP2 and PI3K in metastatic TNBC.
Platelet-derived growth factor receptor-β gene expression relates to recurrence in colorectal cancer
Platelet-derived growth factor receptor-β (PDGFR-β) in epithelial tumors is mainly expressed by stromal cells. High expression of PDGFR-β has been related to poor prognosis in several cancers, however its significance in colorectal cancer (CRC) remains unknown. The present study aimed to clarify the prognostic impact of PDGFR-β in CRC patients. The study included 194 patients who underwent surgery for CRC. PDGFR-β expression was examined by real-time reverse transcription-polymerase chain reaction and immunohistochemistry and the expression levels were correlated with various clinical parameters. The biological significance was evaluated by knockdown experiments in CRC cell lines and the specific PDGFR inhibitor, crenolanib. PDGFR-β mRNA and protein expression levels were positively correlated with each other. Low PDGFR-β expression was associated with significantly better disease-free survival after curative surgical resection, than high PDGFR-β expression, according to univariate and multivariate analyses. The assessment of PDGFR-β knockdown in two cell lines revealed that small interfering RNA (siRNA) inhibition resulted in statistically significant reductions in cell growth and invasion. PDGFR inhibitor suppressed CRC cell proliferation in vitro in a dose-dependent manner. In conclusion, PDGFR-β expression was a risk factor for recurrence in patients with CRC and PDGFR inhibitor may be a useful therapeutic agent for CRC.
dCas9-Based PDGFR–β Activation ADSCs Accelerate Wound Healing in Diabetic Mice through Angiogenesis and ECM Remodeling
The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic capabilities. In this study, we discovered that all ADSCs populations expressed platelet–derived growth factor receptor β (PDGFR–β), while the expression level decreased dynamically with passages. Thus, using a CRISPRa–based system, we endogenously overexpressed PDGFR–β in ADSCs. Moreover, a series of in vivo and in vitro experiments were conducted to determine the functional changes in PDGFR–β activation ADSCs (AC–ADSCs) and to investigate the underlying mechanisms. With the activation of PDGFR–β, AC–ADSCs exhibited enhanced migration, survival, and paracrine capacity relative to control ADSCs (CON–ADSCs). In addition, the secretion components of AC–ADSCs contained more pro–angiogenic factors and extracellular matrix–associated molecules, which promoted the function of endothelial cells (ECs) in vitro. Additionally, in in vivo transplantation experiments, the AC–ADSCs transplantation group demonstrated improved wound healing rates, stronger collagen deposition, and angiogenesis. Consequently, our findings revealed that PDGFR–β overexpression enhanced the migration, survival, and paracrine capacity of ADSCs and improved therapeutic effects after transplantation to diabetic mice.