Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"PN emissions of CNG vehicle"
Sort by:
Potential of PN Reduction in Passenger Cars with DPF and GPF
by
Comte, Pierre
,
Rubino, Lauretta
,
Mayer, Andreas
in
Aerosols
,
Air quality management
,
Automotive emissions
2025
Particle number concentration (PN) in vehicle exhaust and ambient air describes the number of ultrafine particles (UFPs) below 500 nm, which are recognized as a toxic and carcinogenic component of pollution and are regulated in several countries. Metal nuclei, ash, and organic matter contribute significantly to the ultrafine particle size fraction and, thus, to the particle number concentration. Exhaust gas filtration is increasingly being used worldwide to significantly reduce this pollution, both on diesel particulate filter (DPF) and gasoline particulate filter (GPF) engines. In recent years, the EU has also funded research projects dealing with the possibilities of retrofitting gasoline vehicles with GPFs. This paper presents the results and compares the PN emissions of different vehicles. An original equipment manufacturer (OEM) diesel car with a DPF is considered as a benchmark. The PN emissions of this car are compared with a CNG car without filtration and with gasoline cars equipped with GPFs. It can be concluded that the currently used GPFs still have some potential to improve their filtration efficiency and that a modern CNG car would still have remarkable possibilities to reduce PN emissions with an improved quality GPF.
Journal Article
Diffusion charging measurements on exhaust solid particle number and lung deposited surface area of compressed natural gas and diesel buses
by
Ehteram, Mohammad Ali
,
Eisazadeh, Hessam
,
Khazaee, Iman
in
Aging
,
Aging (natural)
,
Air quality
2020
Because of their direct contact with society, urban buses are prioritized targets for air quality improvement. In this study, a sample group of in-use urban old buses powered by compressed natural gas (CNG) and diesel engines was chosen for particle emission analysis. The CNG buses do not have any type of after-treatment, while diesel ones are equipped with a diesel particulate filter (DPF). To measure the lung deposited surface area (LDSA), a possible physical metric of exhaust particles’ toxicity, a diffusion charger-based analyzer was utilized. The measurements were done at different engine speeds in stationary conditions. The results revealed that although the particle mass emission of CNG buses remains at a low level, the number of emitted particles for 75% of the CNG buses (depending on their maintenance conditions) is 10 to 100 times more than the retrofitted diesel ones, with the range of 10
6
to 10
7
p/cm
3
. The rest 25% of the CNG buses were performing the same as the retrofitted diesel ones in terms of exhaust particle number in the range of 10
5
p/cm
3
. In addition, the lowest LDSA parameter at low idle engine speed was measured to be 97.8 and 229.4 μm
2
/cm
3
for a CNG and a DPF retrofitted diesel bus, respectively. This result indicates the same and even lower LDSA and surface area and thus the lower possible toxic potentiality of exhaust particles of CNG buses compared to diesel vehicles at DPF downstream. Investigation on the different behavior of the CNG buses in the emission of particles showed the correlation of some aging parameters such as lubricant oil aging mileage with the released particles and the importance of periodic maintenance interval.
Graphical abstract
Journal Article