Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
24,705 result(s) for "POWER CAPACITY"
Sort by:
Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies
A bi-objective joint optimization planning approach that combines component sizing and short-term operational planning into a single model with demand response strategies to realize a techno-economically feasible renewable energy-based microgrid is discussed in this paper. The system model includes a photovoltaic system, wind turbine, and battery. An enhanced demand response program with dynamic pricing devised based on instantaneous imbalances between surplus, deficit, and the battery’s power capacity is developed. A quantitative metric for assessing energy storage performance is also proposed and utilized. Emergency, critical peak pricing, and power capacity-based dynamic pricing (PCDP) demand response programs (DRPs) are comparatively analyzed to determine the most cost-effective planning approach. Four simulation scenarios to determine the most techno-economic planning approach are formulated and solved using a mixed-integer linear programming algorithm optimization solver with the epsilon constraint method in Matlab. The objective function is to minimize the total annualized costs (TACs) while satisfying the reliability criterion regarding the loss of power supply probability and energy storage dependency. The results show that including the DRP resulted in a significant reduction in TACs and system component capacities. The cost-benefit of incorporating PCDP DRP strategies in the planning model increases the overall system flexibility.
Africa's power infrastructure : investment, integration, efficiency
This study is a product of the Africa Infrastructure Country Diagnostic (AICD), a project designed to expand the world's knowledge of physical infrastructure in Africa. The AICD provides a baseline against which future improvements in infrastructure services can be measured, making it possible to monitor the results achieved from donor support. It also offers a more solid empirical foundation for prioritizing investments and designing policy reforms in the infrastructure sectors in Africa. The book draws upon a number of background papers that were prepared by World Bank staff and consultants, under the auspices of the AICD. The main findings were synthesized in a flagship report titled Africa's infrastructure: A time for transformation, published in November 2009. Meant for policy makers, that report necessarily focused on the high-level conclusions. It attracted widespread media coverage feeding directly into discussions at the 2009 African union commission heads of state summit on infrastructure.
Global growth in offshore wind turbine technology
Due to the commissioning of floating wind units, the latest technological developments, significant growth, and improvements in turbines, developments in offshore wind power capacity are estimated to increase faster than in the last two decades. The total installed offshore wind power capacity, which is currently 35 GW, is predicted to be approximately 382 GW by 2030 and approximately 2002 GW by 2050. For this reason, attempts are proposed to lower levelized cost of electricity (LCOE) for offshore wind power generation more than for other energy sources. In this study firstly, the global growth in the nominal capacity and size of offshore wind turbines over the last twenty years is examined. Then, the effects of this increase in nominal capacity and size on the LCOE, total installation cost (TIC), and turbine capacity factor are investigated. In parallel with this development, the changes in distance to shore and water depth for installation offshore wind power plants are reviewed according to the years. In addition, the effects of this global growth on wind farm capacity, turbine-specific power capacity, number of turbines per GW, and area needed per GW are investigated and discussed in detail.
Africa's ICT infrastructure : building on the mobile revolution
Information and communication technologies (ICTs) have been a remarkable success in Africa. Across the continent, the availability and quality of service have gone up and the cost has gone down. In just 10 years dating from the end of the 1990s mobile network coverage rose from 16 percent to 90 percent of the urban population; by 2009, rural coverage stood at just under 50 percent of the population. Although the performance of Africa's mobile networks over the past decade has been remarkable, the telecommunications sector in the rest of the world has also evolved rapidly. Many countries now regard broadband Internet as central to their long-term economic development strategies, and many companies realize that the use of ICT is the key to maintaining profitability. This book is about that challenge and others. Chapters two and three describe the recent history of the telecommunications market in Africa; they cover such issues as prices, access, the performance of the networks, and the regulatory reforms that have triggered much of the investment. This part of the book compares network performance across the region and tries to explain why some countries have moved so much more quickly than others in providing affordable telecommunications services. Chapter four explores the financial side of the telecommunications revolution in Africa and details how the massive investments have been financed and which companies have most influenced the sector. Chapter five deals with the future of the sector. The final chapter synthesizes the main chapters of the book and presents policy recommendations intended to drive the sector forward.
Technological and dimensional improvements in onshore commercial large-scale wind turbines in the world and Turkey
Wind turbine technology has advanced significantly during the past 10 years all around the world. To raise the turbine capacity factor, developers are building bigger, more dependable wind turbines with bigger hub heights and rotor diameters. Long-bladed, large-rotor, tall-tower, and low-specific power wind turbines with higher capacity factors (CFs) developed in this direction may become more important in the future energy systems since they can generate electricity in more economical conditions. The increase in nameplate capacity, hub height, and rotor diameter of onshore wind turbines around the world as well as in Turkey is, therefore, examined in this study. The impacts of this development in wind turbine size on the levelized cost of electricity, total installed cost, and CF are analyzed. Moreover, the effects of this expansion on turbine-specific power capacity, wind farm capacity, and the number of wind turbines per GW are thoroughly evaluated. To promote future advancements in large-scale wind turbine technology, these inspection results can be used to evaluate the technical and financial viability of turbines. They can also serve as a useful data source and a substantial advantage in the construction and development of new wind energy facilities.
A Novel WPT System Based on Dual Transmitters and Dual Receivers for High Power Applications: Analysis, Design and Implementation
Traditional Wireless Power Transfer (WPT) systems only have one energy transmission path, which can hardly meet the power demand for high power applications, e.g., railway applications (electric trains and trams, etc.) due to the capacity constraints of power electronic devices. A novel WPT system based on dual transmitters and dual receivers is proposed in this paper to upgrade the power capacity of the WPT system. The reliability and availability of the proposed WPT system can be dramatically improved due to the four energy transmission paths. A three-dimensional finite element analysis (FEA) tool ANSYS MAXWELL (ANSYS, Canonsburg, PA, USA) is adopted to investigate the proposed magnetic coupling structure. Besides, the effects of the crossing coupling mutual inductances among the transmitters and receivers are analyzed. It shows that the same-side cross couplings will decrease the efficiency and transmitted power. Decoupling transformers are employed to mitigate the effects of the same-side cross couplings. Meanwhile, the output voltage in the secondary side can be regulated at its designed value with a fast response performance, and the system can continue work even with a faulty inverter. Finally, a scale-down experimental setup is provided to verify the proposed approach. The experimental results indicate that the proposed method could improve the transmitted power capacity, overall efficiency and reliability, simultaneously. The proposed WPT structure is a potential alternative for high power applications.
Potential visibility, growth, and technological innovation in offshore wind turbines installed in Europe
One of the primary trends in the technological growth of offshore wind turbines is the movement toward larger-rotor machines with higher hub height. Recently, offshore wind turbine sizes, especially hub height, rotor diameter, and nameplate capacity, have increased dramatically and are expected to increase further. This growth in offshore wind turbine size enhances the turbine power coefficient for the same wind speeds significantly and also led to the reductions of levelized cost of electricity (LCOE) and total installed cost (TIC) of the turbines. This work examines the growth in the nameplate size and capacity of offshore wind turbines installed in Europe through the years as new installations and total installations. Effects and results of this growth in nameplate size and capacity on the LCOE, TIC, wind farm capacity, turbine-specific power capacity, turbine capacity factor (CF), sea surface area needed per GW, and the number of turbines per GW are examined and discussed in detail. As a result, this study aims to contribute to the literature and provide technical and innovative information to turbine manufacturers by presenting various aspects of offshore wind turbine technology development in Europe. The rapid technological developments in this sector show that the average CF has increased from 42 to 44% in the last decade, and the LCOE value has reduced from 0.156 USD/kWh to 0.096 USD/kWh.
Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band
Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter for the 3.0 GHz–3.2 GHz S-band. Using a scandium-doped aluminum nitride (Sc0.2Al0.8N) film, the filter is designed through a combined acoustic–electromagnetic simulation method, and the FBAR and filter are fabricated using an eight-step lithographic process. The measured FBAR presents an effective electromechanical coupling coefficient (keff2) value up to 13.3%, and the measured filter demonstrates a −3 dB bandwidth of 115 MHz (from 3.013 GHz to 3.128 GHz), a low insertion loss of −2.4 dB, and good out-of-band rejection of −30 dB. The measured 1 dB compression point of the fabricated filter is 30.5 dBm, and the first series resonator burns out first as the input power increases. This work paves the way for research on high-power RF filters in mobile communication.
Techno-Economic Assessment and Operational Planning of Wind-Battery Distributed Renewable Generation System
Electrical energy and power demand will experience exponential increase with the rise of the global population. Power demand is predictable and can be estimated based on population and available historical data. However, renewable energy sources (RES) are intermittent, unpredictable, and environment-dependent. Interestingly, microgrids are becoming smarter but require adequate and an appropriate energy storage system (ESS) to support their smooth and optimal operation. The deep discharge caused by the charging–discharging operation of the ESS affects its state of health, depth of discharge (DOD), and life cycle, and inadvertently reduces its lifetime. Additionally, these parameters of the ESS are directly affected by the varying demand and intermittency of RES. This study presents an assessment of battery energy storage in wind-penetrated microgrids considering the DOD of the ESS. The study investigates two scenarios: a standalone microgrid, and a grid-connected microgrid. The problem is formulated based on the operation cost of the microgrid considering the DOD and the lifetime of the battery. The optimization problem is solved using non-linear programming. The scheduled operation cost of the microgrid, the daily scheduling cost of ESS, the power dispatch by distributed generators, and the DOD of the battery storage at any point in time are reported. Performance analysis showed that a power loss probability of less than 10% is achievable in all scenarios, demonstrating the effectiveness of the study.
Wind energy in Colombia : a framework for market entry
The wind regime in Colombia has been rated among the best in South America. However, under the current circumstances, and on its own, the interconnected system would not likely promote wind power. This report is targeted to analysts, planners, operators, generators and decision makers in Colombia and other countries in the region and provides a set of policy options to promote the use of wind power. The potential instruments assessed in this study include financial instruments, government fiscal mechanisms, and adjustments to the regulatory system. The single most effective policy instrument to promote wind power in Colombia consists on valuing the firm energy offered by wind, its potential complementarity to the hydrological regime and enabling wind power an access to reliability payments.