Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
346,508 result(s) for "PROTEIN KINASE"
Sort by:
For blood and money : billionaires, biotech, and the quest for a blockbuster drug
This book tells the little-known story of how an upstart biotechnology company created a one-in-a-million cancer drug, and how the core team - denied their share of the profits - went and did it again. In this epic saga of money and science, a veteran financial journalist explains how the invention of two of the biggest cancer drugs in history became (for their backers) two of the greatest Wall Street bets of all time. In the multibillion-dollar business of biotech, where pharmaceutical companies, the government, hedge funds, and venture capitalists have spent billions on funding, experimentation, and treatments, a single molecule can stop cancer in its tracks - and make the people who find that rare molecule astonishingly rich. This book follows a small team at a biotech start-up in California, who have found one of these rare molecules. Their compound, known as a BTK inhibitor, seems to work on a vicious type of leukemia. When patients start rising from their hospice beds, the team knows they're onto something big. What follows is a story of genius, pathos, and drama, in which vivid characters navigate a world of corporate intrigue and ambiguous morality. The author's narrative immerses readers in the explosion of biotech start-ups. He describes the scientists, doctors, and investors who are risking everything to develop new, life-saving treatments, and introduces suffering patients for whom the stakes are life-or-death. A gripping nonfiction read, this book illustrates why it's so hard to bring new drugs to market, explains why they are so expensive, and examines how profit-driven venture capitalists are shaping the future of medicine. -- Adapted from publisher's description.
Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis
In this randomized, placebo-controlled trial, treatment with nintedanib, an intracellular inhibitor of multiple tyrosine kinases, led to a reduced rate of loss of forced vital capacity in patients with idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease characterized by worsening dyspnea and progressive loss of lung function. 1 A decline in forced vital capacity (FVC) is consistent with disease progression and is predictive of reduced survival time. 1 – 6 Idiopathic pulmonary fibrosis is believed to arise from an aberrant proliferation of fibrous tissue and tissue remodeling due to the abnormal function and signaling of alveolar epithelial cells and interstitial fibroblasts. 7 The activation of cell-signaling pathways through tyrosine kinases such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) has been implicated in the pathogenesis of . . .
A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics
Crystallographic analysis depicting the interaction of the kinase inhibitor SCH772984 with ERK1/2 reveals a unique binding pocket distinct from off-targets such as haspin and is associated with slow binding kinetics and prolonged inhibitory activity. Activation of the ERK pathway is a hallmark of cancer, and targeting of upstream signaling partners led to the development of approved drugs. Recently, SCH772984 has been shown to be a selective and potent ERK1/2 inhibitor. Here we report the structural mechanism for its remarkable selectivity. In ERK1/2, SCH772984 induces a so-far-unknown binding pocket that accommodates the piperazine-phenyl-pyrimidine decoration. This new binding pocket was created by an inactive conformation of the phosphate-binding loop and an outward tilt of helix αC. In contrast, structure determination of SCH772984 with the off-target haspin and JNK1 revealed two canonical but distinct type I binding modes. Notably, the new binding mode with ERK1/2 was associated with slow binding kinetics in vitro as well as in cell-based assay systems. The described binding mode of SCH772984 with ERK1/2 enables the design of a new type of specific kinase inhibitors with prolonged on-target activity.
Structure, function and regulation of the hsp90 machinery
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone which is essential in eukaryotes. It is required for the activation and stabilization of a wide variety of client proteins and many of them are involved in important cellular pathways. Since Hsp90 affects numerous physiological processes such as signal transduction, intracellular transport, and protein degradation, it became an interesting target for cancer therapy. Structurally, Hsp90 is a flexible dimeric protein composed of three different domains which adopt structurally distinct conformations. ATP binding triggers directionality in these conformational changes and leads to a more compact state. To achieve its function, Hsp90 works together with a large group of cofactors, termed co-chaperones. Co-chaperones form defined binary or ternary complexes with Hsp90, which facilitate the maturation of client proteins. In addition, posttranslational modifications of Hsp90, such as phosphorylation and acetylation, provide another level of regulation. They influence the conformational cycle, co-chaperone interaction, and inter-domain communications. In this review, we discuss the recent progress made in understanding the Hsp90 machinery.
First-Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer
The ALK inhibitor crizotinib as first-line therapy was associated with a significantly better response rate, longer progression-free survival, and greater improvement in quality of life measures than standard chemotherapy in patients with ALK -positive lung cancer. Rearrangements of the anaplastic lymphoma kinase ( ALK ) gene are present in 3 to 5% of non–small-cell lung cancers (NSCLCs). 1 , 2 They define a distinct subgroup of NSCLC that typically occurs in younger patients who have never smoked or have a history of light smoking and that has adenocarcinoma histologic characteristics. 3 – 5 Crizotinib is an oral small-molecule tyrosine kinase inhibitor of ALK, MET, and ROS1 kinases. 6 In phase 1 and 2 studies, crizotinib treatment resulted in objective tumor responses in approximately 60% of patients with ALK -positive NSCLC and in progression-free survival of 7 to 10 months. 7 – 9 In . . .
Entrectinib in ROS1-positive advanced non-small cell lung cancer: the phase 2/3 BFAST trial
Although comprehensive biomarker testing is recommended for all patients with advanced/metastatic non-small cell lung cancer (NSCLC) before initiation of first-line treatment, tissue availability can limit testing. Genomic testing in liquid biopsies can be utilized to overcome the inherent limitations of tissue sampling and identify the most appropriate biomarker-informed treatment option for patients. The Blood First Assay Screening Trial is a global, open-label, multicohort trial that evaluates the efficacy and safety of multiple therapies in patients with advanced/metastatic NSCLC and targetable alterations identified by liquid biopsy. We present data from Cohort D ( ROS1 -positive). Patients ≥18 years of age with stage IIIB/IV, ROS1 -positive NSCLC detected by liquid biopsies received entrectinib 600 mg daily. At data cutoff (November 2021), 55 patients were enrolled and 54 had measurable disease. Cohort D met its primary endpoint: the confirmed objective response rate (ORR) by investigator was 81.5%, which was consistent with the ORR from the integrated analysis of entrectinib (investigator-assessed ORR, 73.4%; data cutoff May 2019, ≥12 months of follow-up). The safety profile of entrectinib was consistent with previous reports. These results demonstrate consistency with those from the integrated analysis of entrectinib in patients with ROS1 -positive NSCLC identified by tissue-based testing, and support the clinical value of liquid biopsies to inform clinical decision-making. The integration of liquid biopsies into clinical practice provides patients with a less invasive diagnostic method than tissue-based testing and has faster turnaround times that may expedite the reaching of clinical decisions in the advanced/metastatic NSCLC setting. ClinicalTrials.gov registration: NCT03178552 . Results from this single-arm cohort of the BFAST trial showed that the clinical efficacy of entrectinib in patients with ROS1 -positive NSCLC, selected using liquid biopsies, is consistent with that seen in previous reports where patients were selected using tissue-based testing methods.
Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial
Tolebrutinib is an oral, CNS-penetrant, irreversible inhibitor of Bruton’s tyrosine kinase, an enzyme expressed in B lymphocytes and myeloid cells including microglia, which are major drivers of inflammation in multiple sclerosis. We aimed to determine the dose-response relationship between tolebrutinib and the reduction in new active brain MRI lesions in patients with relapsing multiple sclerosis. We did a 16-week, phase 2b, randomised, double-blind, placebo-controlled, crossover, dose-finding trial at 40 centres (academic sites, specialty clinics, and general neurology centres) in ten countries in Europe and North America. Eligible participants were adults aged 18–55 years with diagnosed relapsing multiple sclerosis (either relapsing-remitting or relapsing secondary progressive multiple sclerosis), and one or more of the following criteria: at least one relapse within the previous year, at least two relapses within the previous 2 years, or at least one active gadolinium-enhancing brain lesion in the 6 months before screening. Exclusion criteria included a diagnosis of primary progressive multiple sclerosis or a diagnosis of secondary progressive multiple sclerosis without relapse. We used a two-step randomisation process to randomly assign eligible participants (1:1) to two cohorts, then further randomly assign participants in each cohort (1:1:1:1) to four tolebrutinib dose groups (5, 15, 30, and 60 mg administered once daily as an oral tablet). Cohort 1 received tolebrutinib for 12 weeks, then matched placebo (ie, identical looking tablets) for 4 weeks; cohort 2 received 4 weeks of placebo followed by 12 weeks of tolebrutinib. Participants and investigators were masked for dose and tolebrutinib-placebo administration sequence; investigators, study team members, and study participants did not have access to unmasked data. MRI scans were done at screening and every 4 weeks over 16 weeks. The primary efficacy endpoint was the number of new gadolinium-enhancing lesions detected on the scan done after 12 weeks of tolebrutinib treatment (assessed at week 12 for cohort 1 and week 16 for cohort 2), relative to the scan done 4 weeks previously, and compared with the lesions accumulated during 4 weeks of placebo run-in period in cohort 2. Efficacy data were analysed in a modified intention-to-treat population, using a two-step multiple comparison procedure with modelling analysis. Safety was assessed for all participants who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov (NCT03889639), EudraCT (2018-003927-12), and WHO (U1111-1220-0572), and has been completed. Between May 14, 2019, and Jan 2, 2020, we enrolled and randomly assigned 130 participants to tolebrutinib: 33 to 5 mg, 32 to 15 mg, 33 to 30 mg, and 32 to 60 mg. 129 (99%) completed the treatment regimen and 126 were included in the primary analysis. At treatment week 12, there was a dose-dependent reduction in the number of new gadolinium-enhancing lesions (mean [SD] lesions per patient: placebo, 1·03 [2·50]; 5 mg, 1·39 [3·20]; 15 mg, 0·77 [1·48]; 30 mg, 0·76 [3·31]; 60 mg, 0·13 [0·43]; p=0·03). One serious adverse event was reported (one patient in the 60 mg group was admitted to hospital because of a multiple sclerosis relapse). The most common non-serious adverse event during tolebrutinib treatment was headache (in one [3%] of 33 in the 5 mg group; three [9%] of 32 in the 15 mg group; one [3%] of 33 in the 30 mg group; and four [13%] of 32 in the 60 mg group). No safety-related discontinuations or treatment-related deaths occurred. 12 weeks of tolebrutinib treatment led to a dose-dependent reduction in new gadolinium-enhancing lesions, the 60 mg dose being the most efficacious, and the drug was well tolerated. Reduction of acute inflammation, combined with the potential to modulate the immune response within the CNS, provides a scientific rationale to pursue phase 3 clinical trials of tolebrutinib in patients with relapsing and progressive forms of multiple sclerosis. Sanofi.
Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial
Therapy targeting Bruton's tyrosine kinase (BTK) with ibrutinib has transformed the treatment of chronic lymphocytic leukaemia. However, patients who are refractory to or relapse after ibrutinib therapy have poor outcomes. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 active in previously treated patients with relapsed or refractory chronic lymphocytic leukaemia. In this study, we assessed the activity and safety of venetoclax in patients with chronic lymphocytic leukaemia who are refractory to or relapse during or after ibrutinib therapy. In this interim analysis of a multicentre, open-label, non-randomised, phase 2 trial, we enrolled patients aged 18 years or older with a documented diagnosis of chronic lymphocytic leukaemia according to the 2008 International Workshop on Chronic Lymphocytic Leukemia (IWCLL) criteria and an Eastern Cooperative Oncology Group performance score of 2 or lower. All patients had relapsed or refractory disease after previous treatment with a BCR signalling pathway inhibitor. All patients were screened for Richter's transformation and cases confirmed by biopsy were excluded. Eligible patients received oral venetoclax, starting at 20 mg per day with stepwise dose ramp-up over 5 weeks to 400 mg per day. Patients with rapidly progressing disease received an accelerated dosing schedule (to 400 mg per day by week 3). The primary endpoint was overall response, defined as the proportion of patients with an overall response per investigator's assessment according to IWCLL criteria. All patients who received at least one dose of venetoclax were included in the activity and safety analyses. This study is ongoing; data for this interim analysis were collected per regulatory agencies' request as of June 30, 2017. This trial is registered with ClinicalTrials.gov, number NCT02141282. Between September, 2014, and November, 2016, 127 previously treated patients with relapsed or refractory chronic lymphocytic leukaemia were enrolled from 15 sites across the USA. 91 patients had received ibrutinib as the last BCR inhibitor therapy before enrolment, 43 of whom were enrolled in the main cohort and 48 in the expansion cohort recruited later after a protocol amendment. At the time of analysis, the median follow-up was 14 months (IQR 8–18) for all 91 patients, 19 months (9–27) for the main cohort, and 12 months (8–15) for the expansion cohort. 59 (65%, 95% CI 53–74) of 91 patients had an overall response, including 30 (70%, 54–83) of 43 patients in the main cohort and 29 (60%, 43–72) of 48 patients in the expansion cohort. The most common treatment-emergent grade 3 or 4 adverse events were neutropenia (46 [51%] of 91 patients), thrombocytopenia (26 [29%]), anaemia (26 [29%]), decreased white blood cell count (17 [19%]), and decreased lymphocyte count (14 [15%]). 17 (19%) of 91 patients died, including seven because of disease progression. No treatment-related deaths occurred. The results of this interim analysis show that venetoclax has durable clinical activity and favourable tolerability in patients with relapsed or refractory chronic lymphocytic leukaemia whose disease progressed during or after discontinutation of ibrutinib therapy. The durability of response to venetoclax will be assessed in the final analysis in 2019. AbbVie, Genentech.
Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer
Alectinib, a potent ALK tyrosine kinase inhibitor, was more effective and somewhat less toxic than crizotinib when used as primary therapy in patients with ALK -positive non–small-cell lung cancer. Importantly, it reduced the risk of CNS relapse.
The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition
The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.