Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
141 result(s) for "PTPN22"
Sort by:
Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease
Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) regulates a panoply of leukocyte signaling pathways. A single nucleotide polymorphism (SNP) in PTPN22 , rs2476601 , is associated with increased risk of Type 1 Diabetes (T1D) and other autoimmune diseases. Over the past decade PTPN22 has been studied intensely in T cell receptor (TCR) and B cell receptor (BCR) signaling. However, the effect of the minor allele on PTPN22 function in TCR signaling is controversial with some reports concluding it has enhanced function and blunts TCR signaling and others reporting it has reduced function and increases TCR signaling. More recently, the core function of PTPN22 as well as functional derangements imparted by the autoimmunity-associated variant allele of PTPN22 have been examined in monocytes, macrophages, dendritic cells, and neutrophils. In this review we will discuss the known functions of PTPN22 in human cells, and we will elaborate on how autoimmunity-associated variants influence these functions across the panoply of immune cells that express PTPN22. Further, we consider currently unresolved questions that require clarification on the role of PTPN22 in immune cell function.
Analysis of PTPN22 −1123 G>C, +788 G>A and +1858 C>T Polymorphisms in Patients with Primary Sjögren’s Syndrome
Background: Primary Sjögren’s syndrome (pSS) is an autoimmune exocrinopathy characterized by lymphocytic infiltration, glandular dysfunction and systemic manifestations. Lyp protein is a negative regulator of the T cell receptor encoded by the tyrosine phosphatase nonreceptor-type 22 (PTPN22) gene. Multiple single-nucleotide polymorphisms (SNPs) in the PTPN22 gene have been associated with susceptibility to autoimmune diseases. This study aimed to investigate the association of PTPN22 SNPs rs2488457 (−1123 G>C), rs33996649 (+788 G>A), rs2476601 (+1858 C>T) with pSS susceptibility in Mexican mestizo subjects. Methods: One hundred fifty pSS patients and 180 healthy controls (HCs) were included. Genotypes of PTPN22 SNPs were identified by PCR-RFLP. PTPN22 expression was evaluated through RT–PCR analysis. Serum anti-SSA/Ro and anti-SSB/La levels were measured using an ELISA kit. Results: Allele and genotype frequencies for all SNPs studied were similar in both groups (p > 0.05). pSS patients showed 17-fold higher expression of PTNP22 than HCs, and mRNA levels correlated with SSDAI score (r2 = 0.499, p = 0.008) and levels of anti-SSA/Ro and anti-SSB/La autoantibodies (r2 = 0.200, p = 0.03 and r2 = 0.175, p = 0.04, respectively). Positive anti-SSA/Ro pSS patients expressed higher PTPN22 mRNA levels (p = 0.008), with high focus scores by histopathology (p = 0.02). Moreover, PTPN22 expression had high diagnostic accuracy in pSS patients, with an AUC = 0.985. Conclusions: Our findings demonstrate that the PTPN22 SNPs rs2488457 (−1123 G>C), rs33996649 (+788 G>A) and rs2476601 (+1858 C>T) are not associated with the disease susceptibility in the western Mexican population. Additionally, PTPN22 expression may be helpful as a diagnostic biomarker in pSS.
Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with unexplained recurrent pregnancy loss: A case-control study
Background: Lymphoid-tyrosine-phosphatase which is encoded by the protein tyrosine phosphatase non-receptor 22 (PTPN22) gene plays a pivotal role in the regulation of immune responses by dephosphorylating several signaling intermediates of immune cells. Objective: Since a balanced immune response has been shown to be important during pregnancy, the purpose of this research was to compare the frequency of the PTPN22 C1858T polymorphism in women with unexplained recurrent pregnancy loss (URPL) vs. in a control group for the first time. Materials and Methods: Genomic DNA from 200 individuals with URPL and 200 individuals without URPL (the control group) at the infertility center in Yazd, Iran was isolated using the salting-out method. The PTPN22 C1858T polymorphism of the two groups was analyzed using polymerase chain reaction-restriction fragment length polymorphism. Genotype frequencies in the women with URPL and the fertile control group were compared using the Chi-square test. Results: There were significant differences in the frequency of the PTPN22 1858T polymorphism in the URPL individuals vs. the healthy controls, i.e. 32.0% and 21.5%, respectively (p = 0.01). Conclusion: Our findings suggest that the PTPN22 1858T polymorphism could play a role in recurrent pregnancy loss. Therefore, genotyping of the mentioned polymorphism can help clinicians to predict the probable risk of URPL. Key words: Recurrent pregnancy loss, PTPN22 protein, Single nucleotide polymorphism.
PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection
The protein encoded by the autoimmune-associated protein tyrosine phosphatase nonreceptor type 22 gene, PTPN22, has wide-ranging effects in immune cells including suppression of T-cell receptor signaling and promoting efficient production of type I interferons (IFN-I) by myeloid cells. Here we show that mice deficient in PTPN22 resist chronic viral infection with lymphocytic choriomeningitis virus clone 13 (LCMV cl13). The numbers and function of viral-specific CD4 T lymphocytes is greatly enhanced, whereas expression of the IFNβ-induced IL-2 repressor, cAMP-responsive element modulator (CREM) is reduced. Reduction of CREM expression in wild-type CD4 T lymphocytes prevents the loss of IL-2 production by CD4 T lymphocytes during infection with LCMV cl13. These findings implicate the IFNβ/CREM/IL-2 axis in regulating T-lymphocyte function during chronic viral infection.
Genetic basis of defects in immune tolerance underlying the development of autoimmunity
Genetic variants associated with susceptibility to autoimmune disease have provided important insight into the mechanisms responsible for the loss of immune tolerance and the subsequent development of autoantibodies, tissue damage, and onset of clinical disease. Here, we review how genetic variants shared across multiple autoimmune diseases have contributed to our understanding of global tolerance failure, focusing on variants in the human leukocyte antigen region, PTPN2 and PTPN22, and their role in antigen presentation and T and B cell homeostasis. Variants unique to a specific autoimmune disease such as those in PADI2 and PADI4 that are associated with rheumatoid arthritis are also discussed, addressing their role in disease-specific immunopathology. Current research continues to focus on determining the functional consequences of autoimmune disease-associated variants but has recently expanded to variants in the non-coding regions of the genome using novel approaches to investigate the impact of these variants on mechanisms regulating gene expression. Lastly, studying genetic risk variants in the setting of autoimmunity has clinical implications, helping predict who will develop autoimmune disease and also identifying potential therapeutic targets.
PTPN22 R620W gene editing in T cells enhances low-avidity TCR responses
A genetic variant in the gene PTPN22 (R620W, rs2476601) is strongly associated with increased risk for multiple autoimmune diseases and linked to altered TCR regulation and T cell activation. Here, we utilize Crispr/Cas9 gene editing with donor DNA repair templates in human cord blood-derived, naive T cells to generate PTPN22 risk edited (620W), non-risk edited (620R), or knockout T cells from the same donor. PTPN22 risk edited cells exhibited increased activation marker expression following non-specific TCR engagement, findings that mimicked PTPN22 KO cells. Next, using lentiviral delivery of T1D patient-derived TCRs against the pancreatic autoantigen, islet-specific glucose-6 phosphatase catalytic subunit-related protein (IGRP), we demonstrate that loss of PTPN22 function led to enhanced signaling in T cells expressing a lower avidity self-reactive TCR, but not a high-avidity TCR. In this setting, loss of PTPN22 mediated enhanced proliferation and Th1 skewing. Importantly, expression of the risk variant in association with a lower avidity TCR also increased proliferation relative to PTPN22 non-risk T cells. Together, these findings suggest that, in primary human T cells, PTPN22 rs2476601 contributes to autoimmunity risk by permitting increased TCR signaling and activation in mildly self-reactive T cells, thereby potentially expanding the self-reactive T cell pool and skewing this population toward an inflammatory phenotype.
SNP in PTPN22, PADI4, and STAT4 but Not TRAF1 and CD40 Increase the Risk of Rheumatoid Arthritis in Polish Population
Single nucleotide polymorphisms in non-HLA genes are involved in the development of rheumatoid arthritis (RA). SNPS in genes: PADI4 (rs2240340), STAT4 (rs7574865), CD40 (rs4810485), PTPN22 (rs2476601), and TRAF1 (rs3761847) have been described as risk factors for the development of autoimmune diseases, including RA. This study aimed to assess the prevalence of polymorphisms of these genes in the Polish population of patients with rheumatoid arthritis as compared to healthy controls. 324 subjects were included in the study: 153 healthy subjects and 181 patients from the Department of Rheumatology, Medical University of Lodz who fulfilled the criteria of rheumatoid arthritis diagnosis. Genotypes were determined by Taqman SNP Genotyping Assay. rs2476601 (G/A, OR = 2.16, CI = 1.27–3.66; A/A, OR = 10.35, CI = 1.27–84.21), rs2240340 (C/T, OR = 4.35, CI = 2.55–7.42; T/T, OR = 2.80, CI = 1.43–4.10) and rs7574865 (G/T, OR = 1.97, CI = 1.21–3.21; T/T, OR = 3.33, CI = 1.01–11.02) were associated with RA in the Polish population. Rs4810485 was also associated with RA, however after Bonferroni’s correction was statistically insignificant. We also found an association between minor alleles of rs2476601, rs2240340, and rs7574865 and RA (OR = 2.32, CI = 1.47–3.66; OR = 2.335, CI = 1.64–3.31; OR = 1.88, CI = 1.27–2.79, respectively). Multilocus analysis revealed an association between CGGGT and rare (below 0.02 frequency) haplotypes (OR = 12.28, CI = 2.65–56.91; OR = 3.23, CI = 1.63–6.39). In the Polish population, polymorphisms of the PADI4, PTPN22, and STAT4 genes have been detected, which are also known risk factors for RA in various other populations.
PTPN22 gene functional polymorphism (rs2476601) in older adults with frailty syndrome
The frailty syndrome is a common clinical marker of vulnerability in older adults conducive to an overall decline in inflammatory stress responsiveness; yet little is known about the genetic risk factors for frailty in elderly. Our aim was to investigate the association between the rs2476601 polymorphism in PTPN22 gene and susceptibility to frailty in Mexican older adults. Data included 630 subjects 70 and older from The Coyoacán cohort, classified as frail, pre-frail, and non-frail following Fried’s criteria. Sociodemographic and clinical characteristics were compared between groups at baseline and after a multivariate analysis. The rs2476601 polymorphism was genotyped by TaqMan genotyping assay using real-time PCR and genotype frequencies were determined for each frailty phenotype in all participants and subsets by age range. Genetic association was examined using stratified and interaction analyses adjusting for age, sex and variables selected in the multivariate analysis. Disability for day-life activities, depression and cognitive impairment were associated with the risk of pre-frailty and frailty at baseline and after adjustment. Carrying the T allele increased significantly the risk of frailty in patients 76 and older (OR 5.64, 95% CI 4.112–7.165) and decreased the risk of pre-frailty under no clinical signs of depression (OR 0.53; 95% CI 0.17–1.71). The PTPN22 polymorphism, rs2476601, could be a genetic risk factor for frailty as subject to quality of life. This is the first study analyzing such relationship in Mexican older adults. Confirming these findings requires additional association studies on wider age ranges in populations of older adults with frailty syndrome.
PTPN22 Dephosphorylates CBL to Inhibit PD-L1 Ubiquitination and Drive Immunosuppression in Renal Cell Carcinoma
High lymphocyte infiltration and T cell exhaustion characterize the tumor microenvironment in renal cell carcinoma (RCC). Protein tyrosine phosphatase N22 (PTPN22), a protein tyrosine phosphatase that mediates proteins tyrosine dephosphorylation, is a negative regulator of T cell receptor signaling, but its role in tumor cells has been underappreciated. PTPN22 is highly expressed in RCC cells and positively correlated with PD-L1 protein expression. CBL was newly identified as a substrate of PTPN22, and our study reveals for the first time that CBL mediates the K48-linked ubiquitination of PD-L1. PTPN22 specifically interacts with CBL, catalyzing the dephosphorylation of tyrosine 700 and inhibiting CBL binding to PD-L1, thereby preventing CBL-mediated ubiquitination and degradation of PD-L1. This stabilization of PD-L1 promotes T cell exhaustion and immunosuppression. Through screening of traditional Chinese medicine monomers, we identified curcumin as a potential PTPN22 inhibitor. Curcumin reduces PTPN22 stability and PTPN22 expression by directly binding to PTPN22. experiments demonstrated that combining curcumin with immune checkpoint inhibition (ICIs) further promotes T cell activation, inhibits Tregs infiltration, and enhances ICIs efficacy against tumor growth. Therefore, PTPN22 represents a therapeutic target for improving T cell exhaustion in RCC and enhance ICIs efficacy through CBL-mediated ubiquitination and degradation of PD-L1.
The Tyrosine Phosphatase Activity of PTPN22 Is Involved in T Cell Development via the Regulation of TCR Expression
The protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly. Furthermore, PTPN22 CS facilitated the positive and negative selection of developing thymocytes, increased the expression of the TCRαβ-CD3 complex on the thymus cell surface, and regulated their internalization and recycling. ZAP70, Lck, Phospholipase C gamma1(PLCγ1), and other proteins were observed to be reduced in PTPN22 CS mouse thymocytes. In summary, PTPN22 regulates TCR internalization and recycling via the modulation of the TCR signaling pathway and affects TCR expression on the T cell surface to regulate negative and positive selection. PTPN22 affected the development of the thymus, spleen, lymph nodes, and other peripheral immune organs in mice. Our study demonstrated that PTPN22 plays a crucial role in T cell development and provides a theoretical basis for immune system construction.