Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,470
result(s) for
"Pain - immunology"
Sort by:
An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis
by
Bennett, David L
,
Denk, Franziska
,
Rutter-Locher, Zoe
in
Analgesics
,
Arthralgia
,
Autoantibodies
2024
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.Emerging data suggest that resident cells and locally produced mediators interact with nerves in the joint to promote pain in rheumatoid arthritis. This Review discusses the potential neuro–immune–stromal interactions promoting joint pain and highlights the need for an interdisciplinary approach to therapeutic development.
Journal Article
CD8 T cells are dispensable for experimental autoimmune prostatitis induction and chronic pelvic pain development
by
Martinez, Maria S
,
Godoy, Gloria J
,
Rivero, Virginia E
in
Animal models
,
Antibodies
,
Antigens
2024
IntroductionChronic Pelvic Pain Syndrome or Chronic Prostatitis (CPPS/CP) is the most prevalent urologic affliction among young adult men. It is a challenging condition to treat, which significantly decreases patient quality of life, mostly because of its still uncertain aetiology. In that regard, an autoimmune origin is a prominent supported theory. Indeed, studies in patients and in rodent models of Experimental Autoimmune Prostatitis (EAP) have provided compelling evidence suggesting a key role of CD4 Th1 cells in disease pathogenesis. However, the implication of other prominent effectors of the immune system, such as CD8 T cells, has yet to be studied.MethodsWe herein analyzed the induction of prostatitis and the development of chronic pelvic pain in EAP using CD8 T cell-deficient animals.ResultsWe found similarly elevated PA-specific immune responses, with high frequencies of specific IFNg+CD4+ and IL17+CD4+ T cells in prostate draining lymph nodes from PA-immunized either CD8 KO or wild type animals with respect to controls. Moreover, these peripheral immune responses were paralleled by the development of significant chronic pelvic pain, and accompanied by prostate histological lesions, characterized by hemorrhage, epithelial cell desquamation, marked periglandular leukocyte infiltration, and increased collagen deposition in both, PA-immunized CD8 KO and wild type animals. As expected, control animals did not develop prostate histological lesions.DiscussionOur results indicate that CD8 T cells do not play a major role in EAP pathogenesis and chronic pelvic pain development. Moreover, our results corroborate the previous notion that a CD4 Th1 associated immune response drives the induction of prostate tissue inflammation and the development of chronic pelvic pain.
Journal Article
Immune Competence and Pain: A Narrative Review
by
Schweiger, Vittorio
,
Coaccioli, Stefano
,
Sarzi-Puttini, Piercarlo
in
Animals
,
Chronic Pain - immunology
,
Chronic Pain - physiopathology
2024
Purpose of Review
This review aims to summarize current knowledge on the pathophysiology of pain and the role of neuro-immune crosstalk in the development of acute and chronic pain (CP). Specifically, the review focuses on the role of immune cells involved in the innate and acquired immune response, emphasizing their bidirectional interactions with the nervous systems and discussing the implications of this crosstalk on acute and CP management.
Recent Findings
In the last two decades, multiple studies have uncovered the important role of the immune system in initiating, maintaining, and resolving pain stimuli. Furthermore, researchers discovered that the immune system interacts tightly with the nervous system, creating a bidirectional crosstalk in which immune cells influence the response of peripheral and central nerve fibers while neurotransmitters and neuropeptides released by nociceptors directly and indirectly modulate the immune response.
Summary
The neuro-immune crosstalk in acute and CP is a complex and not fully understood process that comprise the interactions of multiple diverse molecules, bidirectional interferences, and numerous redundant processes. Despite the complexity, important steps have been taken in recent years toward explaining the specific roles of each immune cell type and molecule in the initiation, maintenance and resolution of pain. These findings may set the basis for innovative therapeutic options that target the immune system, overcoming the limitations of current treatments in providing pain relief and the disadvantages associated with opioid therapy.
Journal Article
Correlation between gene expression and MRI STIR signals in patients with chronic low back pain and Modic changes indicates immune involvement
by
Haugen, Anne Julsrud
,
Schistad, Elina Iordanova
,
Lie, Benedicte Alexandra
in
631/208/199
,
692/1807/410/2610
,
692/4023/808
2022
Disability and distress caused by chronic low back pain (LBP) lacking clear pathoanatomical explanations cause huge problems both for patients and society. A subgroup of patients has Modic changes (MC), identifiable by MRI as vertebral bone marrow lesions. The cause of such changes and their relationship to pain are not yet understood. We explored the pathobiology of these lesions using profiling of gene expression in blood, coupled with an edema-sensitive MRI technique known as short tau inversion recovery (STIR) imaging. STIR images and total RNA from blood were collected from 96 patients with chronic LBP and MC type I, the most inflammatory MC state. We found the expression of 37 genes significantly associated with STIR signal volume, ten genes with edema abundancy (a constructed combination of STIR signal volume, height, and intensity), and one gene with expression levels significantly associated with maximum STIR signal intensity. Gene sets related to interferon signaling, mitochondrial metabolism and defense response to virus were identified as significantly enriched among the upregulated genes in all three analyses. Our results point to inflammation and immunological defense as important players in MC biology in patients with chronic LBP.
Journal Article
Th1-Th17 Cells Contribute to the Development of Uropathogenic Escherichia coli-Induced Chronic Pelvic Pain
by
Done, Joseph D.
,
Schaeffer, Anthony J.
,
Quick, Marsha L.
in
Adoptive Transfer
,
Animals
,
Autoimmunity
2013
The etiology of chronic prostatitis/chronic pelvic pain syndrome in men is unknown but may involve microbes and autoimmune mechanisms. We developed an infection model of chronic pelvic pain in NOD/ShiLtJ (NOD) mice with a clinical Escherichia coli isolate (CP-1) from a patient with chronic pelvic pain. We investigated pain mechanisms in NOD mice and compared it to C57BL/6 (B6) mice, a strain resistant to CP-1-induced pain. Adoptive transfer of CD4+ T cells, but not serum, from CP-1-infected NOD mice was sufficient to induce chronic pelvic pain. CD4+ T cells in CP-1-infected NOD mice expressed IFN-γ and IL-17A but not IL-4, consistent with a Th1/Th17 immune signature. Adoptive transfer of ex-vivo expanded IFN-γ or IL-17A-expressing cells was sufficient to induce pelvic pain in naïve NOD recipients. Pelvic pain was not abolished in NOD-IFN-γ-KO mice but was associated with an enhanced IL-17A immune response to CP1 infection. These findings demonstrate a novel role for Th1 and Th17-mediated adaptive immune mechanisms in chronic pelvic pain.
Journal Article
Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain
2016
In the central nervous system, bidirectional signaling between glial cells and neurons (‘neuroimmune communication’) facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions.
Journal Article
Enrichment of genomic pathways based on differential DNA methylation profiles associated with chronic musculoskeletal pain in older adults: An exploratory study
by
Foster, Thomas C
,
Rani, Asha
,
Cruz-Almeida, Yenisel
in
Activating transcription factor 2
,
Activating Transcription Factor 2 - genetics
,
Activating Transcription Factor 2 - metabolism
2020
Our study aimed to identify differentially methylated CpGs/regions and their enriched genomic pathways associated with underlying chronic musculoskeletal pain in older individuals. We recruited cognitively healthy older adults with (n = 20) and without (n = 9) self-reported musculoskeletal pain and collected DNA from peripheral blood that was analyzed using MethylationEPIC arrays. We identified 31,739 hypermethylated CpG and 10,811 hypomethylated CpG probes (ps ≤ 0.05). All CpG probes were clustered into 5966 regions, among which 600 regions were differentially methylated at p ≤ 0.05 level, including 294 hypermethylated regions and 306 hypomethylated regions (differentially methylated regions). Ingenuity pathway enrichment analysis revealed that the pain-related differentially methylated regions were enriched across multiple pathways. The top 10 canonical pathways were linked to cellular signaling processes related to immune responses (i.e. antigen presentation, programed cell death 1 receptor/PD-1 ligand 1, interleukin-4, OX40 signaling, T cell exhaustion, and apoptosis) and gamma-aminobutyric acid receptor signaling. Further, Weighted Gene Correlation Network Analysis revealed a comethylation network module in the pain group that was not preserved in the control group, where the hub gene was the cyclic adenosine monophosphate-dependent transcription factor ATF-2. Our preliminary findings provide new epigenetic insights into the role of aberrant immune signaling in musculoskeletal pain in older adults while further supporting involvement of dysfunctional GABAergic signaling mechanisms in chronic pain. Our findings need to be urgently replicated in larger cohorts as they may serve as a basis for developing and targeting future interventions.
Journal Article
Local immune response to food antigens drives meal-induced abdominal pain
2021
Up to 20% of people worldwide develop gastrointestinal symptoms following a meal
1
, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H
1
-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.
In mice, oral tolerance to food antigens can break down after enteric infection, and this leads to food-induced pain resembling irritable bowel syndrome in humans.
Journal Article
Correlation Between Altered Central Pain Processing and Concentration of Peritoneal Fluid Inflammatory Cytokines in Endometriosis Patients With Chronic Pelvic Pain
by
Bersinger, Nick A
,
Andersen, Ole K
,
Mueller, Michael D
in
Cytokines
,
Endometriosis
,
Inflammation
2014
Translational research has not yet elucidated whether alterations in central pain processes are related to peripheral inflammatory processes in chronic pain patients. We tested the hypothesis that the concentration of cytokines in the peritoneal fluid of endometriosis patients with chronic pain correlate with parameters of hyperexcitability of the nociceptive system. The concentrations of 15 peritoneal fluid cytokines were measured in 11 patients with chronic pelvic pain and a diagnosis of endometriosis. Six parameters assessing central pain processes were recorded. Positive correlations between concentration of some cytokines in the peritoneal fluid and amplification of central pain processing were found. The results suggest that inflammatory mechanisms may be important in the pathophysiology of altered central pain processes and that cytokines produced in the environment of endometriosis could act as mediators between the peripheral lesion and changes in central nociceptive processes.
Journal Article
Autoantibodies against P29ING4 are associated with complex regional pain syndrome
IntroductionComplex regional pain syndrome (CRPS) is a complication following trauma or surgery and may be difficult to diagnose since biomarkers are lacking. Using protein array technology, we found antibodies binding to p29ING4, which we further characterized using ELISA.MethodsThirty-six sera of early-stage type 1 CRPS, 66 sera of rheumatoid arthritis (RA), 53 sera of axial spondyloarthritis (axSpA), 29 sera of psoriatic arthritis (PsA), 22 sera of patients after radial fractures (trauma control), and 100 sera of blood donors (BD) were analyzed for anti-p29ING4. We established ELISAs with 7 different antigens and using different secondary antibodies binding to IgG, IgG1, IgG2, IgG3, IgG4, IgA, and IgM, and 2 different tests to detect immune complexes (IC) of p29ING4 and IgG or IgG1.ResultsThe highest likelihood ratios versus CRPS and trauma control were observed considering the A1-23 (sensitivity 19%, specificity 100%, LR > 19) using IgG as a secondary antibody, the A120-165 (sensitivity 17%, specificity 100%, LR = 17) using IgG as a secondary antibody and the A120-165 (sensitivity 31%, specificity 95%, LR = 6.2) using IgA as a secondary antibody. IC of p29ING4 and IgG were present in 11/36 (31%) CRPS sera, 17/64 (27%) RA sera, 13/53 (25%) SpA sera, 5/29 (17%) PsA sera, 1/22 (5%) trauma control sera, and 4/100 (4%) sera of BD. IC of p29ING4 and IgG1 were present in 14/36 (39%) CRPS sera, 19/64 (30%) RA sera, 13/53 (25%) SpA, 1/29 (3%) PsA, 2/22 (9%) trauma control, and 4/100 (4%) of the BD sera.ConclusionDue to the lack of other biomarkers of type 1 CRPS, P29ING4 autoantibodies could be helpful in its diagnostic work-up.
Journal Article