Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
814 result(s) for "Pair bond"
Sort by:
Reciprocal processes of sensory perception and social bonding: an integrated social‐sensory framework of social behavior
Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared “social umwelt” allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social‐sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships? Defining the brain networks that support social communication and behavior has tremendous value for elucidating brain function and supporting broad translational applications for human mental health and well‐being. The foundations and trajectories of prairie vole and zebra finch neurobiological research are quite different, but together these two well‐studied species offer complementary perspectives on what an integrated social‐sensory communication circuit might look like. We believe that integrating the social behavior/decision making network with brain regions responsible for chemosensory and auditory processing provides a platform for such research. Designing experiments that focus on how social experience modulates perception, sensory processing, and communication promise to be particularly powerful for clarifying how social bonding produces lasting impacts on brain and behavior.
Better stay together: pair bond duration increases individual fitness independent of age-related variation
Prolonged pair bonds have the potential to improve reproductive performance of socially monogamous animals by increasing pair familiarity and enhancing coordination and cooperation between pair members. However, this has proved very difficult to test robustly because of important confounds such as age and reproductive experience. Here, we address limitations of previous studies and provide a rigorous test of the mate familiarity effect in the socially monogamous blue-footed booby, Sula nebouxii, a long-lived marine bird with a high divorce rate. Taking advantage of a natural disassociation between age and pair bond duration in this species, and applying a novel analytical approach to a 24 year database, we found that those pairs which have been together for longer establish their clutches five weeks earlier in the season, hatch more of their eggs and produce 35% more fledglings, regardless of age and reproductive experience. Our results demonstrate that pair bond duration increases individual fitness and further suggest that synergistic effects between a male and female's behaviour are likely to be involved in generating a mate familiarity effect. These findings help to explain the age- and experience-independent benefits of remating and their role in life-history evolution.
Exploring the function of greeting display in a long-term monogamous songbird, the Java sparrow
Complex displays that comprise multiple behavioral elements play an essential role in the communication of group-living animals. One of them is a greeting display. Greeting is performed during the reunion after a separation, and is known for maintaining social bonds in mammals and pair bonds in monogamous fish. Greeting displays have been documented in birds, but lack functional studies. Java sparrows ( Lonchura oryzivora ) are gregarious and long-term monogamous songbird species, exhibiting a complex greeting display consisting of a sequence of four repetitive behavioral elements. We hypothesized that Java sparrow greetings function as between-pair communication in social contexts. In particular, we expected that pair-bonded partners would greet more after experiencing longer separation. In addition, we also predicted that they greet more when other conspecific individuals are nearby; as it is more important for them to confirm and advertise their commitment relationships. To test these ideas, we conducted separation-reunion tests using pair-bonded Java sparrows with different separation times (long vs. short) and different social conditions (with vs. without the presence of conspecifics). We calculated and compared the sequential complexity of the greeting displays. We showed that subject pairs performed a greater number of greeting display bouts after longer separation times. In the presence of conspecifics, greeting displays were more frequent, longer, and more complex. Our finding supports the idea that greeting displays in birds are crucial to pair-bond maintenance, contributing to understanding the evolution of complex communications in birds.
Let's stay together? Intrinsic and extrinsic factors involved in pair bond dissolution in a recolonizing wolf population
1. For socially monogamous species, breeder bond dissolution has important consequences for population dynamics, but the extent to which extrinsic or intrinsic population factors causes pair dissolution remain poorly understood, especially among carnivores. 2. Using an extensive life-history data set, a survival analysis and competing risks framework, we examined the fate of 153 different wolf (Canis lupus) pairs in the recolonizing Scandinavian wolf population, during 14 winters of snow tracking and DNA monitoring. 3. Wolf pair dissolution was generally linked to a mortality event and was strongly affected by extrinsic (i.e. anthropogenic) causes. No divorce was observed, and among the pair dissolution where causes have been identified, death of one or both wolves was always involved. Median time from pair formation to pair dissolution was three consecutive winters (i.e. approximately 2 years). Pair dissolution was mostly human-related, primarily caused by legal control actions (36.7%), verified poaching (9.2%) and traffic-related causes (2.1%). Intrinsic factors, such as disease and age, accounted for only 7.7% of pair dissolutions. The remaining 44.3% of dissolution events were from unknown causes, but we argue that a large portion could be explained by an additional source of human-caused mortality, cryptic poaching. 4. Extrinsic population factors, such as variables describing the geographical location of the pair, had a stronger effect on risk of pair dissolution compared to anthropogenic landscape characteristics. Population intrinsic factors, such as the inbreeding coefficient of the male pair member, had a negative effect on pair bond duration. The mechanism behind this result remains unknown, but might be explained by lower survival of inbred males or more complex inbreeding effects mediated by behaviour. 5. Our study provides quantitative estimates of breeder bond duration in a social carnivore and highlights the effect of extrinsic (i.e. anthropogenic) and intrinsic factors (i.e. inbreeding) involved in wolf pair bond duration. Unlike the effects of intrinsic and extrinsic factors that are commonly reported on individual survival or population growth, here we provide quantitative estimates of their potential effect on the social unit of the population, the wolf pair.
Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior
The causes and consequences of individual differences in animal behavior and stress physiology are increasingly studied in wild animals, yet the possibility that stress physiology underlies individual variation in social behavior has received less attention. In this review, we bring together these study areas and focus on understanding how the activity of the vertebrate neuroendocrine stress axis (HPA‐axis) may underlie individual differences in social behavior in wild animals. We first describe a continuum of vertebrate social behaviors spanning from initial social tendencies (proactive behavior) to social behavior occurring in reproductive contexts (parental care, sexual pair‐bonding) and lastly to social behavior occurring in nonreproductive contexts (nonsexual bonding, group‐level cooperation). We then perform a qualitative review of existing literature to address the correlative and causal association between measures of HPA‐axis activity (glucocorticoid levels or GCs) and each of these types of social behavior. As expected, elevated HPA‐axis activity can inhibit social behavior associated with initial social tendencies (approaching conspecifics) and reproduction. However, elevated HPA‐axis activity may also enhance more elaborate social behavior outside of reproductive contexts, such as alloparental care behavior. In addition, the effect of GCs on social behavior can depend upon the sociality of the stressor (cause of increase in GCs) and the severity of stress (extent of increase in GCs). Our review shows that the while the associations between stress responses and sociality are diverse, the role of HPA‐axis activity behind social behavior may shift toward more facilitating and less inhibiting in more social species, providing insight into how stress physiology and social systems may co‐evolve. The causes of consistent individual differences in behavior (animal personality traits) are increasingly studied. We examined how the physiological stress system is associated with animal personality traits with a special focus on social behavior. We used a literature analysis to show how increased stress levels can inhibit or promote social behavior across vertebrate taxa.
Physiological state matching in a pair bonded poison frog
More than a century ago, Charles Darwin hypothesized that the empathy-like phenotype is a phylogenetically widespread phenomenon. This idea remains contentious, due to the challenges of empirically examining emotions, and few investigations among non-mammalian vertebrates. We provide support for Darwin's hypothesis by discovering partial evidence for the most ancestral form of empathy, emotional contagion (i.e. matching another individual's emotional state), in the pair bonding mimetic poison frog, Ranitomeya imitator . We found that male corticosterone, a physiological biomarker of stress, positively correlates with female partners in experimental and semi-natural conditions. This does not appear to coincide with behavioural state-matching. However, it is specific to female partners relative to familiar female non-partners, and is independent of effects that commonly confound studies on emotional contagion. Furthermore, this physiological state-matching is irrespective of partnership longevity or lifetime reproductive output. These results physiologically indicate socially selective emotional contagion in a monogamous amphibian, and paradigms that elicit coinciding neural and behavioural indicators and morphogenic co-variation are needed for further corroboration. Further studies on ancestral forms of empathy in non-mammalian vertebrates are warranted.
Effects of systemic endocannabinoid manipulation on social and exploratory behavior in prairie voles (Microtus ochrogaster)
RationaleAnandamide is an endocannabinoid that contributes to certain aspects of social behavior, like play and reward, by binding to cannabinoid receptor type 1 (CB1). Most interesting is the recent discovery that anandamide may be mobilized by oxytocin receptor activation under certain contexts, particularly in the nucleus accumbens.ObjectivesGiven the established role of oxytocin and the nucleus accumbens in the neurobiology of pair-bonding, we investigated whether systemic administration of brain-permeable modulators of the endocannabinoid system could alter preferential partner contact in both male and female prairie voles.MethodsSpecifically, we tested whether intraperitoneal administration of the neutral CB1 antagonist AM4113 (4.0–16.0 mg/kg) or the anandamide hydrolysis inhibitor URB597 (5.0–20.0 mg/kg) could prevent or facilitate partner preference formation, respectively. To further investigate the specificity of effects on partner preference, we repeated our URB597 dosing regimen on an additional group of females and tested their anxiety-related behavior in both an elevated-plus maze and a light/dark test.ResultsAM4113 administration had no effect on partner preference. But while URB597 also had no effect on partner preference, low-dose females did increase absolute preferential contact with either the partner or the stranger; individual females spent significant contact time with either the partner or the stranger. None of our outcome measures in either anxiety test showed significant effects of treatment.ConclusionsOur results reveal that experimentally increasing anandamide levels in female prairie voles can increase social contact with both a familiar and novel male via unknown mechanisms that are likely separate from anxiety reduction.
Persistent effects of pair bonding in lung cancer cell growth in monogamous Peromyscus californicus
Epidemiological evidence suggests that social interactions and especially bonding between couples influence tumorigenesis, yet whether this is due to lifestyle changes, homogamy (likelihood of individuals to marry people of similar health), or directly associated with host-induced effects in tumors remains debatable. In the present study, we explored if tumorigenesis is associated with the bonding experience in monogamous rodents at which disruption of pair bonds is linked to anxiety and stress. Comparison of lung cancer cell spheroids that formed in the presence of sera from bonded and bond-disrupted deer mice showed that in monogamous Peromyscus polionotus and Peromyscus californicus , but not in polygamous Peromyscus maniculatus , the disruption of pair bonds altered the size and morphology of spheroids in a manner that is consistent with the acquisition of increased oncogenic potential. In vivo, consecutive transplantation of human lung cancer cells between P. californicus , differing in bonding experiences (n = 9 for bonded and n = 7 for bond-disrupted), and nude mice showed that bonding suppressed tumorigenicity in nude mice (p<0.05), suggesting that the protective effects of pair bonds persisted even after bonding ceased. Unsupervised hierarchical clustering indicated that the transcriptomes of lung cancer cells clustered according to the serum donors’ bonding history while differential gene expression analysis pointed to changes in cell adhesion and migration. The results highlight the pro-oncogenic effects of pair-bond disruption, point to the acquisition of expression signatures in cancer cells that are relevant to the bonding experiences of serum donors, and question the ability of conventional mouse models to capture the whole spectrum of the impact of the host in tumorigenesis. People’s social interactions could influence their risk of developing various diseases, including cancer, according to population-level studies. In particular, studies have identified a so-called widowhood effect where a person’s risk of disease increases following the loss of a spouse. However, the cause of the widowhood effect remains debatable, as it can be difficult to separate the impact of lifestyle changes from biological changes in the individual following bereavement. It is not possible to use laboratory mice to identify a causal biological mechanism, because they do not form long-term relationships with a single partner (pair bonds). However, several species of deer mouse form pair bonds, and suffer from anxiety and stress if these bonds are broken. Naderi et al. used these mice to study the widowhood effect on the risk of developing cancer. First, Naderi et al. grew human lung cancer cells in blood serum taken from mice that were either in a pair bond or had been separated from their partner. The cancer cells grown in the blood of mice with disrupted pair bonds changed size and shape, indicating that these mice were more likely to develop cancer. This effect was not observed when the cells were grown in the blood of bonded deer mice or of another deer mouse species that does not form pair bonds. Naderi et al. also found that the activity of genes involved in the cancer cells’ ability to spread and to stick together was different in pair-bonded mice and in pair-separated mice. Next, Naderi et al. implanted lung cancer cells into the deer mice to study their effects on live animals. When cancer cells from the deer mice were transplanted into laboratory mice with a weakened immune system, the cells taken from pair-bonded deer mice were less likely to grow than the cells from deer mice with disrupted pair bonds. This suggests that the protective effects of pair bonding persist even after removal from the original mouse. These results provide evidence for a biological mechanism of the widowhood effect, where social experiences can alter gene activity relating to cancer growth. In the future, it will be important to determine whether the same applies to humans, and to find out if there are ways to mimic the effects of long-term bonds to improve cancer prognoses.
Bond valence and bond energy
The relationship between bond valence and structural energy has never been fully explored, although several predictive models have assumed some simple relationship between the two. Some of these models relate energy only to bond valence, while others also take into account other factors, such as bond character. We examined periodic trends in bond dissociation energies as a function of their ionicity, covalency, and metallicity, defined in terms of the electronegativity values of the atoms involved. A statistical model was optimized to describe these trends, allowing us to generate rough bond energy vs. bond valence curves. The shapes of these curves vary dramatically as a function of bond character, and are strongly influenced by the lone-pair bond-weakening effect. The curve shapes can be used to rationalize several chemical trends, including the preferred structures of compounds with different bond types, the prevalence of peroxide and persulfide minerals, preferred bond lengths in oxides, and the pKa values of (hydr)oxy-acids. The last is perhaps the most important, because some valence-based acidity models are in current use, despite the fact that some aspects of their rationale are unclear.
Understanding the impact of correlation within pair‐bonds on Cormack–Jolly–Seber models
The Cormack–Jolly–Seber (CJS) model and its extensions have been widely applied to the study of animal survival rates in open populations. The model assumes that individuals within the population of interest have independent fates. It is, however, highly unlikely that a pair of animals which have formed a long‐term pairing have dissociated fates. We examine a model extension which allows animals who have formed a pair‐bond to have correlated survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation study exploring the impact that correlated fate data has on inference from the CJS model. We compute Monte Carlo estimates for the bias, range, and standard errors of the parameters of the CJS model for data with varying degrees of survival correlation between mates. Furthermore, we study the likelihood ratio test of sex effects within the CJS model by simulating densities of the deviance. Finally, we estimate the variance inflation factor c^ for CJS models that incorporate sex‐specific heterogeneity. Our study shows that correlated fates between mated animals may result in underestimated standard errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated values of c^ for models taking sex‐specific effects into account. Underestimated standard errors can result in lowered coverage of confidence intervals. Moreover, deflated test statistics will provide overly conservative test results. Finally, underestimated variance inflation factors can lead researchers to make incorrect conclusions about the level of extra‐binomial variation present in their data. We present an extension to the Cormack–Jolly–Seber (CJS) model that allows animals who have formed a pair‐bond to have correlated survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation study exploring the impact that correlated fate data has on inference from the CJS model. Our study shows that correlated fates between mated animals may result in underestimated standard errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated values of ĉ for models taking sex‐specific effects into account.